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Interest in the numerical solution of acoustic inverse scattering problems arises in a number
of areas. Examples include medical diagnostics, non-destructive industrial testing, geophys-
ical prospecting for petroleum and minerals, and detection of earthquakes.
The highly nonlinear and oscillatory nature of the probltm is one of the major difficulties
one encounters in the construction of effective inversion algorithms. Schemes based on
global or local linearization methods, or nonlinear optimization techniques, tend to work
only when the index of refraction is almost constant. They develop serious convergence
problems whenever the perturbation of the index of refraction increases.
Limited successes in the solution of the inverse problems have been achieved only in one di-
mensional cases (Gelfand-Levitan and layer striping methods are among the most notable).
These methods are generally unstable numerically since the procedures used to calculate
the index of refraction are ill-conditioned.
We present a method for the solution of inverse problems for the one dimensional Helmholtz
equation. The scheme is based on a combination of the standard Riccati equation for the
impedance function with a new trace formula for the derivative of the index of refraction,
and can be viewed as a frequency domain version of the layer-stripping approach. The
principal advantage of the procedure is that if the scatterer to be reconstructed has m > 1
continuous derivatives, the accuracy of the reconstruction is proportional to 1/am, where a
is the highest frequency for which scattering data axe available. Thus, a smooth scatterer
is reconstructed very accurately from a limited amount of available data.
The scheme has an asymptotic cost 0(n 2 ), where n is the number of features to be recovered
(as do classical layer-stripping algorithms), and is stable with respect to perturbations of
the scattering data. The performance of the algorithm is illustrated by several numerical
examples. Generalizations of this approach in two dimensions are discussed.
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Chapter 1

Introduction

1.1 Background

During the last several decades, the inverse scattering problems for the Helmholtz
equation have enjoyed a remarkable degree of popularity, both in pure and ap-
plied contexts (see, e.g., [1], [2]). A number of algorithms has been proposed
for the numerical treatment of these problems, in such environments as medical
diagnostics, non-destructive industrial testing, anti-submarine warfare, oil explo-
ration, etc. In the design of such a scheme, three major problems have to be
overcome.

1. The problem is highly non-linear, even in its purely mathematical form. In
the one-dimensional case, the problem can be reduced to a linear one, but the
procedure is not stable numerically.

2. Once a mathematically valid inversion scheme is constructed, it might or
might not be stable numerically. In fact, no numerically robust schemes seem to
exist at this time, except in one dimension.

3. The cost of applying the scheme on the computer tends to be extremely high,
except in the one-dimensional case.

The existing attempts to solve inverse scattering problems for the Helmholtz
equation can be roughly subdivided into four groups.

1. Linearized inversion schemes, attempting to approximate the inverse scattering
problem by the problem of inverting an appropriately chosen linear operator (see,
for example, [2]).

2. Methods based on the non-linear optimization techniques, attempting to re-
cover the parameters of the problem iteratively, by solving a sequence of forward
scattering problems (see, for example, [3], [4], [5]).
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3. Gel'fand-Levitan and related techniques, converting the Helmholtz equation
into the Schr6dinger equation, the inverse problem for the latter being reducible
to the solution of a linear Volterra integral equation (see, for example, [1], [6]).

4. Techniques based on the so-called trace formulae, connecting the high fre-
quency behavior of the solutions of the Helmholtz equation with the local values
of the parameters to be recovered (see, for example, [7], [8], [9]).

The approach of this thesis falls into the category 4 above, and is different
from the preceding work in the choice of the trace formula (see Theorem 4.19
in Section 4.3). The new trace formula leads to an algorithm with superior
convergence properties for smooth scatterers (see Chapter 5 below), and the
resulting numerical procedure is extremely stable and efficient.

1.2 Thesis Organization

Chapter 2 contains the exact formulation of the problem to be addressed, to-
gether with the relevant notation. In Chapter 3, we summarize the background
facts to be used in this thesis. Chapter 4 is devoted to the development of the
mathematical apparatus used to construct the algorithm, and in Chapter 5 the
scheme itself is presented. In Chapter 6 we present several numerical examples
demonstrating the actual performance of the procedure. Finally, in Chapter 7
we discuss generalizations of the approach to higher dimensions.



Chapter 2

Formulation of the Problem

2.1 The Helmholtz Equation

Following the standard practice, we will be considering the one dimensional scalar
Helmholtz equation

0"(x, k) + k2 (1 + q(x))4(x, k) = 0. (2.1)

Unless specified otherwise, we will be assuming that q E c([0, 1]), i.e., that q is
twice continuously differentiable everywhere, and that q(x) = 0 for all x V [0, 1].
Defining the function n : R --* R by the formula

n(x) = V1 + q(x), (2.2)

we will denote by no, ni the minimum and maximum of n respectively, and
assume that 0 < no so that

no _ n(x) = V'1 + q(x) ni. (2.3)

For any complex k, we consider solutions of the Helmholtz equation 0+(x, k) and
¢_(x, k) which have the form

0+(x,k) = kinc+(x,k)+-scat+(x,k), (2.4)

¢_(x,k) = ¢i c_(x,k) +O¢ct_(X~k) (2.5)

with

¢inc+(x,k) = eikx, (2.6)
¢in,-(x,k) = e - ikx (2.7)

3
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and kscat+, scat- both satisfying the outgoing radiation boundary conditions

¢scat(0, k) + ikOsct(0, k) = 0, (2.8)

scat(1, k) - ik¢scat(1, k) = 0. (2.9)

Normally, oinc+ and €jn¢- are referred to as right-going and left-going incident
fields respectively, and Oscat+ and scat- are called scattered fields corresponding
to the excitations €i,4+ and ic-. The sum of an incident field and its corre-
sponding scattered field is called the total field.

Remark 2.1 Throughout this thesis, given a function f(x., k), we will take the
liberty to denote L by f'(x, k), so that the derivatives in the formulae (2.15).
(2.16) are with respect to x.

As is well-known, for any complex k, the scattered fields Cscat+(x, k) and
0scat-(X, k) satisfy the nonhomogeneous Helmholtz equations

¢scat+(X, k) + k2 (1 + q(x)).,cat+(x, k) = -k 2q(x)eik, (2.10)

ocat-(x, k) + k2 (1 + q(x)),cajt_(x, k) = -k 2 q(x)e -tk. (2.11)

Since q(x) = 0 for all x V (0, 1). it is easy to see that for any k E C there exist
two complex numbers y+(k), s_(k), identified as the reflection coefficients, such
that

0scat(X, k) = y+(k) e-ik, for all x < 0, (2.12)

Oscat(Xk) = y-(k) eik,. for all x > 1, (2.13)

due to (2.10), (2.8) and (2.11), (2.9) respectively.

2.2 The Impedance Functions

Denote by C + the upper half of the complex plane so that

C+ = {k E CjIm(k) > 0}. (2.14)

For any k E C + , the impedance functions p+(x, k),p-_(x, k) associated with
0+(x, k), 0_(x, k), respectively, are defined by the formulae

p+(x, k) - (x, k)p+X )= +(2.15)

¢'(x, k)

p_(x,k) = -ik'(x, k) (2.16)

• mmmm mmmmmmmm mmmmmm mmmm mmmmm0m(mx . .. .
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Remark 2.2 For x outside the scatterer. it is easy to obtain explicit expressions
for p+,p- in terms of reflection coefficients p+, p. Indeed, combining (2.4) with
(2.12), (2.5) with (2.13), we have

0+(x, k) = eikx + , +(k)e- 'k' , for all x < , (2.17)

0-(x, k) = e-ikr + P-(k)e i kx, for all x > 1, (2.18)

which can be reformulated as

0+(x, k) = ei kx + b+()e - ikx + a+(k), for all x < 0, (2.19)
6-(x,k) = e-ikx + b_(k)eikx+c-(k), for all x > 1. (2.20)

with a+(k),a-(k) real numbers and b+(k) >_ 0, b-_(k) >_ 0, for any k E C.
Consequently,

p+(x,k) = 1 - b2(k) + i2b+(k) sin(kx - a+(k))

1 + b2 (k)+ 2b+(k) cos(kx - a+(k))

for all x < 0, and

p(x,k) = 1 - b2 (k) + i2b_(k) sin(kx - a(k)) (2.22)
1 + b!.(k) + 2b_(k) cos(kx - a_(k))

for all x > 1.

For any complex number k, the boundary value problems for 0+, € can be
reformulated as initial value problems. More specifically, formulae (2.4), (2.5),
(2.12) and (2.13) imply that there exist such complex constants a,/3, depending
only on k, that

0+(x, k) = a eik, for all x > 1, (2.23)

0_(x,k) = /3. , for all x <O. (2.24)

Furthermore, a, /3 are nonzero because, e.g., if /3 = 0, then €_(0, k) = 0'(0, k) =
0, according to uniqueness theorem on initial value problems, -_(x, k) = 0 for
all x E R, i.e.,

Oscat-(x, k) = -ic- (x,k) = e - ikx , (2.25)

contradicting to (2.13). Clearly, formulae (2.23), (2.24) can be used as initial
conditions for equation (2.1) to (uniquely) determine the total fields 6+, €_.

Remark 2.3 While the existence and uniqueness of the functions 0+, 0- are
quite obvious for any complex k, the functions p+(x, k).p-(x, k) are only well-
defined when Im(k) 0 0, and the proof of this fact is somewhat involved (see
lemmas in Section 4.1 below).
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Remark 2.4 It is easy to see that the impedance functions p+,p- are indepen-
dent of the nonzero coefficients a, 03 in (2.23), (2.24). Therefore, for simplicity,
the initial conditions (2.23), (2.24) are reformulated as

0+(x,k) = eikx, for all x > 1, (2.26)

0-(x,k) = e- ik, . for al x <0 (2.27)

The functions 0+, 0- as solutions of equation (2.1) subject to boundary condi-
tions (2.26), (2.27) differ from those subject to boundary conditions (2.23),
(2.24) by constants.

The classical inverse scattering problem for the equation (2.1) is as follows:
Problem 1. Given the impedance function p+(0, k) for all k E R, reconstruct
the potential q for all x E [0, 1].

It is well-known that this problem has a unique solution (and in the class
of functions q much broader than cg([0, 1]), and several constructive schemes for
that purpose have been proposed, most notably the Gel'fand-Levitan and related
methods. However, in applications the impedance function p+ (0, k) is measured
with a finite accuracy and at a finite number of (usually equispaced) values of the
wavenumber k. Therefore, the following problem is more relevant in numerical
applications

Problem 2. Suppose that the impedance function p+(0, k) is given at a finite
number of frequencies kj,j = 1, 2,..., N defined by the formulae kj = j -h, with
h a positive constant. Suppose further that the values p+(0, kj) are given with
the relative accuracy e. Reconstruct the potential q in the interval [0, 1] with the
error that rapidly decreases with increasing N and decreasing h.

This thesis is devoted to the construction of an algorithm for the solution of
the Problem 2.

Observation 2.5 The value of impedance function p+ at x = xo, xo < 0 can be
obtained from 0+(xo, k) in the following manner. Assuming that at x < 0, the
total field 0+(x, k) is given by (2.17), from which y+(k) can be obtained

= (0+(xo, k) - eikxo) eikxo, (2.28)

the value of the impedance function p+ at x = xo is then

p+(xo, k) = I(x, k) 1 - I+(k)e- 2ik ° 2

ik¢+(xo, k) 1 + I+(k)e- 2 ikx (2.29)

eikxo

= 2 0+(xo,k) 1 (2.30)
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Similarly, for any x, 1

p-~~~ (,k) - Mke 2 ikxl 2_______2.31
1 + ,1 4(k)e 2 ik.l 4..(ik



Chapter 3

Mathematical Preliminaries

In this chapter, we summarize several well-known mathematical facts to be used
in the rest of this thesis. These facts are given without proofs, since Lemmas 3.1-
3.8 are found in standard textbooks (see, for example, [10], [11], ) and Lemmas
3.9-3.6 are easy to verify directly.

3.1 Basic Lemmas

The following basic facts are tailored and stated in such a way that they will be
directly used in the existence and convergence proofs, see Chapter 4 and Section
5.2.

Lemma 3.1 Suppose that A is a linear mapping C[0, 11 -- C[0, 1] and that
hAIl 5 p, with p a real number such that p < 1. Then for any g E L 2[0,1],
the equation

€= AO+g (3.1)

has a unique solution, which is the sum of the series (known as Neumann's series)

00

= A] A.3.2)j=O

Furthermore,
nn+1

11€- E Ajg]j < P 1hg (3.3)j=0 -- P

Lemma 3.2 Suppose that f E q([0, D]) (i.e., f has m continuous derivatives
and f(x) = 0 for all x V (0, D)), and that f(m) is absolutely continuous. Suppose
further that g E cm+l(R), g(m+l) is absolutely continuous and there exist real

8
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number a > 0 such that g'(x) > a for all x E R. Then there exists a real c > 0
such that

1 f(x)eik(x+g(x)dx < jkJ,+ (3.4)

for all complex k such that Im(k) > 0.

Lemma 3.3 Suppose that f E c'(R) with I a nonnegative integer. Suppose fur-
ther that f(U)(O) = 0 for 0 < j < 1, f(l) is absolutely continuous Tcn there
exists a positive number c such that

j f i~ek(x-t )dt - i _~~ 1 (x) + 1 (fl(x) + b(x, k)) (3.5)J0f(= 1 f 2 (1 ' +

with b: R x C+ -+ C an absolutely continuous function of x E [0, 1] such that

Ib(x,k)I < c. (3.6)

for all x E [0, 1], k E C+ . Furthermore, if f (x) = 0 for all x > D with D a
positive number, then

I b(x, k)l< c. (3.7)

for all (x,k) E R x C+

Lemma 3.4 Suppose that a : [0, 1] -+ R and b : [0, 1] - C are two continuous
functions, and that a(x) > 0, for all x E [0, 1]. Then for any two solutions u and
v of the second order ODE

(a(x)O'(x))' + b(x)O(x) = 0, (3.8)

there exists a constant c such that

a(x)(u(x)v'(x) - v(x)u'(x)) = c (3.9)

for all x E [0, 11. Furthermore, c 6 0 if and only if u and v are linearly inde-
pendent. (The expression W(u, v) = u(x)v'(x) - v(x)u'(x) is referred to as the
Wronskian of the pair u, v).

Lemma 3.5 (Gronwall's inequality) Suppose that u, v, w : [0, a] -+ R are three
continuous and nonnegative functions, satisfying the inequality

w(x) _ u(x) + jv(t)w(t)dt (3.10)

for all x E [0, a]. Then

w(x) < u(x) + fo u(t)v(t)e,"v(id-dt (3.11)

for all x E [0, a].



10 CHAPTER 3. MATHEMATICAL PRELIMINARIES

The following lemma is a special case of the general theorem about continuous
dependence on initial conditions and parameters of solutions of ODEs (see, for
example, [11]).

Lemma 3.6 Suppose that a : C -- C is an entire function and that A : R x C --

C"' is an n x n-matrix whose entries aij(x,z),i,j = 1,...,n are continuous
functions of x and entire functions of z for all x E R. Then for any z E C, the
differential equation

y'(x, z) = A(x, z). y(x, z) (3.12)

subject to the initial condition

y(O) = c(z) (3.13)

has an unique solution y(x,z) for all x E R. Moreover, y(x,z) is an entire
function of z.

3.2 Schrodinger Equation and Riccati Equa-
tion

Lemmas 3.7- 3.13 describe the basic facts about the Helmholtz equation and
its connections with the Schr~dinger Equation and the Riccati Equation, in the
context of scattering problems.

Lemma 3.7 Suppose that Gk : [0, 1] X [0, 11 -+ C is the Green's function of the
boundary value problem

0"(x, k) + k2t(x, k) = 0, (3.14)

0'(0, k) + ikO(0, k) = 0, (3.15)
?k'(1,k)- ikO(1,k) = 0. (3.16)

for any complex k : 0. Then the boundary value problem

0"(x, k) + (k2 + 2(x)) 0(x, k) = f(x, k) (3.17)
P'(0, k) + ikb(0, k) = 0, (3.18)
0'(1, k) - ik(1, k) = 0. (3.19)

is equivalent to a second kind integral equation1
¢(x,k) = - Gk(X,t) 7(t)/(t,k)dt+g(x,k) (3.20)

with f, g : [0, 1] x C -- C and g defined by the formula

g(x,k) = jGk(X,t)f(t,k)dt. (3.21)
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Lemma 3.8 For any complex k 0 0, the Helmholtz equation

0"(x, k) + k2 b(x, k) = 0 (3.22)

with the outgoing radiation conditions (2.8) (2.9) has the Green's function

Gk(Xt) = 1 eik(t - ) x < t, (3.23)

Lemma 3.9 Suppose that q : R --+ R is a c2-function such that q > -1 for all
x E R. Suppose further that the functions n, x, S, q, g : R - R are defined by the

formulae
n(x) = V1 + q(x), (3.24)

t(x) = j n(-)d-, (3.25)

S(t) = (1 + q(x(t)))4 (3.26)

7 (t) =S"(t) 
n'(x)

S(t) 2(n(x))2
-2 5 q'x)(.74 (1 + q)2 (q"(x)- V1 + q(x)q'(x)- (1 + q)(3.27)

f(zr)
g(t) = -x = f(x). (1 + q(x)); (3.28)

Finally, suppose that the function 0 : R x C --i. C satisfies the equation

0"(x, k) + k2 (1 + q(x)) . O(x, k) = f(x), (3.29)

and the function 1 : R x C -- C is defined by the formula

0(t, k) = k(x(t), k)/S(t) = ¢(x, k). (1 + q(x)) (3.30)

Then the function 0 satisfies the Schri5dinger equation

0"(t, k) + (k 2 + 71(t)) . ik(t, k) = g(t). (3.31)

at all t E R.

Remark 3.10 Lemma 3.9 provides a connection between the solutions of the
Helmholtz equation (3.29) and those of the appropriately chosen Schri'dinger
equation (3.31). This connection will be used in the following chapter as an
analytical tool. However, it is not useful in numerical computations since the
connection between qI and q (see (3.27)) is generally ill-conditioned.
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Corollary 3.11 Suppose that under the conditions of the preceding lemma that
q(x) = 0 for all x (0, 1). Suppose further that the functions 0+, 0- R x C -- C
are defined by the formulae

?P+(t,k) = 0+(x(t),k)/S(t), (3.32)

4'_(t,k) = 0_(x(t),k)/S(t). (3.33)

Then 0+,,0- satisfy the ODEs

7k/(t, k) + (k 2 + ,
7(t)) - b+ (t,k) = 0, (3.34)

V" (t, k) + (k2 +77(t)). _(t,k) = 0 (3.35)

subject to the boundary conditions

0+(t, k) = (k) . eik(t - T 1) (3.36)

for all t > T1, and
V)-_(t, k) = e - kt (337)

for all t < 0 with T1 > 0, (k) # 0 defined by the formulae

T1 = t(1)= n(r)dr, (3.38)

(k) = S(T)eik. (3.39)

Furthermore,

,= ¢.(t, k) n'(x)

+= x)ik+(tk) 2ikn(x)' (3.40)
p_(x,k) = n(x) 0'(t,k) n'(x)

- ik-_(t,k) + 2ikn(x)" (3.41)

Observation 3.12 Suppose that q(x) = 0 for all x 1 (0, 1). Then according to
Lemma 3.9 and Corollary 3.11,

t = x, (3.42)

S(t) = 1, (3.43)

and consequently
0+(x, k) = V+(t, k) (3.44)

for all x < 0. Now, suppose the function 0+ is defined by formulae (3.32),
(2.17). Defining the scattered field 0,.t+ : R x C -- C by the formula

0+(t, k) = ekit + rk5.t+(t, k), (3.45)
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we immediately see that

O~sca+(t, k) = p()-ekt(3.46)

for all x < 0 due to (3.44), (2.17), (3.45). Finally, combining ('3.45) with
(3.34), we observe that tk,,t satisfies the Schriidinger equation

Ok"at+(t, k) + (k 2 + 77(t))V, scat+ (t, k) k k 2 q(x(t))ekX(t) (3.47)
S(t)

subject to outgoing radiation conditions (2.8), (2.9) (the latter due to (3.46),
(3.36)).

Lemma 3.13 Suppose that under the conditions of the preceding lemma,

0+ (xo, ko) # 0, (3.48)
0- (xo, ko) 54 0 (3.49)

at some point (x0 ' ko) E R x C.- Then there exists a neighborhood D of (xo, ko)
such that the impedance functions p+~, p-. satisfy the Riccati equations

p1+(x, k) = - ik (p2(x, k) -(1 +q(x)), (3.50)

pL-(Xlk) = Z'k(p'.(x,k)-(1+q(x)) (3.51)

for all (x, k) E D.

Observation 3.14 Combining formulae (2.23), (2.24), we easily observe that

p+ (x, k) = 1, for all x> 1, (3.52)
p- (x, k) = 1, for all x<O, (3.53)

for all complex k :A 0.



Chapter 4

Impedance Functions and Their
Properties

In this chapter, we investigate analytical properties of the impedance functions
p+, p-. Our principal purpose here is to formulate exactly and prove the following
three facts.

(1) For any x E R, the impedance functions p+(x, k),p-(x, k) are analytic func-
tions of k in the upper half plane C + . Furthermore,

p+(x,k) = I- - q(X) " + o(k-2 ), (4.1)

p_(x,k) = 0 +qW)+ 4(1 +q()) ' + 0(k - ), (4.2)

for all x E R, k E C + (see Theorem 4.14 below).

(2) For large real k, the difference between 7j and p. is extremely small (it
decays like k- ' , where m is the smoothness of the scatterer, see Theorem 4.18
below). The expressions (4.1), (4.2) are the first two terms in WKB expansions
of the functions p+, p., respectively.

(3) For any a > 0, and all x E R, we have the so-called trace formula

q /(X) = 2 (1 + q))i:(p+ (x, k) - p- x, k))dk + 0(a-(--)), (4.3)

with m the smoothness of the scatterer (see Theorem 4.19 below).

As often happens, the statements (1)-(3) above have extremely simple for-
mulations, and a transparent physical interpretation. However, their proofs are
technical and do not follow any simple physical intuition.

14
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4.1 Boundedness

The following five lemmas establish the basic properties of the impedance func-
tions p+, p. introduced in Chapter 1. Lemma 4.1 is a technical one, describing
the behavior of 0+, 0- in the vicinity of k = 0 in the complex plane. Lemma 4.2
describes the properties of the impedance functions p+, p near k = 0, Lemma
4.4 demonstrates the well-definedness of the impedance functions for real k, and
Lemmas 4.5 and 4.6 provide upper and lower bounds for the impedance func-
tions.

Lemma 4.1 Suppose that q E c([0, 1]) and A > 0 is a real number. Then there
exist three positive numbers 6, a and 0 such that

1. 10+(x, k) - 11 <_alkI, (4.4)

2. 10-(x,k)- 11 ajkj, (4.5)

3. 10'(x, k) - iki 5,1k12, (4.6)

4. I4/_(x, k) + ikl 31k 12, (4.7)

5. €(x, k) #0, (4.8)
6. _(x, k) 0, (4.9)

for all real x E [-A, A] and complex k such that Ik <6.

Proof. Since the proofs of this lemma for 0+, 0' and for _, q" are identical,
we only prove it in the case of q_, 4/. Defining two auxiliary functions 41, 4
R x C --+ C by the formulae

0 1 (x,k) = &_(x,k)- 1, (4.10)
0 (x,k) = (x.k) + ik, (4.11)

and combining (4.10), (4.11) with equation (2.1) and the initial condition (2.27),
we observe thac the functions 4, b satisfy the linear first order ODEs

0'(x,k) = V(x,k)+ik, (4.12)
0'(x, k) = -k 2 (1 + q(x))(1 + €1(x, k)) (4.13)

subject to the initial conditions

0 1(0, k) = 0, (4.14)

?P(0, k) = 0. (4.15)

We start with showing that there exist continuous functions M, N : R+ x R + --
R+ such that, for any s E R+, M(s,t), N(s,t) are monotonically increasing
functions of t for all t E R + and

JOI(x,k)l :5 M(A,Ikl)IkI, (4.16)
14(x,k)l :5 N(A, IkI)Ik 2. (4.17)
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First, we prove the estimate (4.17). Integrating (4.12) from 0 to x, we have

01(x, k) = j(ik + 4(t, k))dt, (4.18)

and substituting (4.18) into (4.13) and integrating the result of the substitution,
obtain

,b(x, k) = -k 2 j(1 + q(t)) (1 + f(k + ?P(r, k))d-) dt. (4.19)

Denoting I0(x,k)I by a(x,k) and observing that 1 + q(x) < n' (see (2.3) in
Section 2.1), we obtain

a (x, k) :! Ik 12 n 2 ( xl x2Ijkl +jja(, k)drdt)

< Ik 12 n (x !X2 iki) + Ik12 n 2 j(X - t)a(t, k)dt (4.20)

for any x E R. Gronwall's inequality (see Lemma 3.5) implies that for any
x E [0, A],

a(x, k) :5 Ikl ni ( lxi + 2 k + kj + t 2 Jt2kj(x - t)el(x-')2dt)

< N(A, Ikl)1k12. (4.21)

It is easy to see that (4.21) is also valid for any x E [-A, 0], and we obtain the
estimate (4.17) with N(A, k) defined by the formula

2 IX 1 X2 1t
N(A, Jk?) = sup nix?+x2kl + Ix It, + -tkj(x - t~2 d). (4.22)

-A<x<A 2O 2

We now turn our attention to the estimate (4.16). Substituting (4.17) into
(4.18), we obtain

k0x(x,k) Ix? (IkI+N(A,k)k2)

< M(A,Ikl)Ik, (4.23)

with
M(A, 1k[) = A(1 + lkIN(A, Jk[)), (4.24)

for all real X E [-A, A] and complex k, which proves (4.16).
Now, the estimates (4.5) and (4.7) easily follow from (4.16) and (4.17).

Indeed, since M(A, t) is a continuous, monotonically increasing function of t,
there exists a real 6 such that

M(A,6) .6 < 1. (4.25)
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Denoting M(A, 6) by a, N(A, b) by f3 and observing that M(A,Ik1),N(A,Ik1)
are monotonically increasing functions of 1kI, we have

¢Ii(x,k)l < M(A,[k[)Ikl< M(A,b)k=ajkl, (4.26)
I[(xk)I _< N(A,IkDIk)I _ N(A, b)IkI= 11k12, (4.27)

from which (4.5), (4.7) follow immediately.
Finally, (4.9) is a direct consequence of (4.26) and (4.25). 0

Lemma 4.2 Suppose that q E co2([0, 1]) and A > 0 is a real number. Then there
exists 6 > 0 such that the impedance functions p+,p_ are continuous functions
of (x, k) for all real (x, k) E D with

D = {(x,k)Ix E [-A,A],k E C,k #0.IkI _6} (4.28)

Furthermore,

limp+(x,k) = 1, (4.29)
k-.O

limp_(x,k) = 1. (4.30)
k-.O

Proof. Due to Lemma 4.1, there exists a positive number b such that
0+(x, k) # 0, 0_(x, k) # 0 for all real (x, k) E D. Therefore, the functions p+,p_
are well-defined in D, and their continuity follows from the continuity of 0+,
0', 0-, 0' and the formulae (2.15), (2.16). Finally, (4.29), (4.30) are direct
consequences of Formulae (4.4)- (4.7). 0

Remark 4.3 While the impedance functions p+, p- are continuous in the vicinity
of k = U in the complex plane, formulae (2.15), (2.16) fail to define p+,p_ at
k = 0. We now can define p+(x,0) = p-(x,0) = 1 for all x E R due to Lemma
4.2.

Lemma 4.4 For any real k 0 0 and all x E R

0+(x,k) - 0, (4.31)

14(x,k) # 0, (4.32)
¢_(x,k) # 0, (4.33)

¢'_(x,k) # 0. (4.34)

Proof. Again, since the proofs of this lemma for 0+, 0' and for _, '__ are
identical, we only prove (4.33) and (4.34). Denoting the real part of 0- by u
and the imaginary part by v, so that

¢_(x,k) = u(x,k) +iv(x,k), (4.35)

0'_(x,k) = u'(x,k)+iv'(x,k), (4.36)
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we observe that each of the functions u,v satisfies equation (2.1) (since the
coefficients of the equation are real). Combining the initial condition (2.27)
with (4.35), we immediately see that

u(x,k) = cos(kx), (4.37)

v(x, k) = sin(kx) (4.38)

for all x < 0 and k 5 0. Therefore, the Wronskian of the pair u, v is

W(uv) = k, (4.39)

for any x E R (see Lemma 3.4), and u(x, k), v(x, k) can not be both zero, nor
can u'(x, k), v'(x, k), for any x E R and k : 0. Now, formulae (4.33) and (4.34)
immediately follow from (4.35) and (4.36) 0

We have shown that the impedance functions p+, p- are well-defined for all
real k (see Lemmas 4.2, 4.4 and Remark (4.3)). Now, we turn our attention to
the well-definedness of the impedance functions on the upper half of the k-plane.
First we provide the lower bounds for p+, p-.

Lemma 4.5 For all x E R and any k such that Im(k) > 0,

Re(p+(x,k)) > nosin(arg(k)), (4.40)

Re(p_(x,k)) _ nosin(arg(k)) (4.41)

with 0 < no < 1 the minimum of n(x) (see (2.3) in Section 2.1), and arg(k)
the argument of the complex wave number k.

Proof. Since the proof of (4.40) and that of (4.41) are identical, we only
provide the latter. Observing that

Re(p_(x,k)) = p-_(x,k) = 1 > no sin(arg(k)), (4.42)

for any Im(k) > 0 and all x < 0 (see (3.53) in Chapter 3), we will prove (4.41)
by showing that

T
x (Re(p-_(x, k))) > 0 (4.43)

for any x > 0 such that

0 < Re(p_ (x,k)) < no sin(arg(k)) (4.44)

(obviously, 0 < arg(k) < 7r for any k such that Im(k) > 0).
We will denote by a, b, u, v the real and imaginary parts of k and p. respec-

tively, so that

k = a+ib, (4.45)

p_(x,k) = u(x,k)+iv(x,k), (4.46)
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with b > 0. Now, we can rewrite the Riccati equation (3.51) for p- in the form

ul = b(v 2 - U2 + n 2 ) - 2auv, (4.47)
v/ = -a(v 2 - u - + n2) - 2buv. (4.48)

We observe that °u(x, k) is a function of u, v given by the formula
a
au(x, k) = f(u, v) = b(v2 - u2 + n2) - 2auv. (4.49)

Fx

Denoting the interval [0, no sin(arg(k))] by I, and defining the region D C R x R
via the formula

D = {(u,v)Iu E I,v E R}, (4.50)

we observe that
min f(u, v) - b(n 2 - n2) > 0 (4.51)

(uv)ED

which proves (4.43) given (4.44). Now, (4.41) follows immediately form (4.42),
(4.43) and (4.44). 0

As a direct consequence of Lemma 4.5, the following lemma establishes the
upper bounds of the impedance functions in the upper half-plane.

Lemma 4.6 For any k such that Im(k) > 0 and all x E R,
nl

I(p+(xk)) < sin(arg(k))' (4.52)
p-(,k)n 1 (4.53)

I(P-x'k)l <-sin(arg(k))'

with n, > 0 the maximum of n(x) (see (2.3) in Section 2.1).

Proof. Again, we only give the proof of (4.53) since the proof for (4.52) is
identical. According to Lemma 4.5, the function

r(x,k) = 1/p_(x,k) (4.54)

is well-defined for any Im(k) > 0. Combining (4.54) with the equation (3.51)
and the boundary condition (3.53) for p-, we observe that r(x, k) obeys the
Riccati equation

r'(x,k) = ikn2(x) (r2(x,k) - )(4.55)

subject to the initial condition r(0, k) = 1. Reproducing the proof of Lemma 4.5
almost verbatim, we obtain a lower bound for the real part of r

Re(r(xk)) >_ sin(arg(k)) (4.56)
ni1
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Now, the upper bound
I(p-_(x,k)) _ Re(r(x,k))- 1 < n, (4.57)

sin(arg(k))

is readily obtained by combining (4.54) with (4.56). E3

Corollary 4.7 For all x E R and k such that Im(k) > 0,

0+(x,k) # 0, (4.58)

0'(x,k) 0 0, (4.59)

_(x,k) 0 0, (4.60)
0'_(, k) - 0 (4.61)

Proof. We prove this corollary by contradiction. First, we observe that

0+(x,k) = 0 (4.62)

implies
0'(x,k) = 0 (4.63)

and vice versa, since both 0+(x, k) and 0' (x, k) are continuous functions of x,
and their ratio

ik.p+(x,k) = ¢4(x,k)
+(x, k) (4.64)

is bounded from both above and below due to Lemmas 4.5, 4.6.
Suppose now that for some xo E R, Im(ko) > 0,

0+ (xo, ko) = 0'.(xo, ko) = 0. (4.65)

Then the pair of functions

O(x) = 0+(x, ko), (4.66)

O(x) = 4+(x, ko) (4.67)

satisfies the system of ODEs

0'(-) = (x), (4.68)
0'(T) = -ko(1 + q(x))4(x), (4.69)

subject to the initial conditions

0(Xo) = 4(X0) = 0. (4.70)

However, the initial value problem (4.68), (4.69), (4.70) has a unique solution

O(x) = O() = 0 (4.71)

for all x < x0, which contradicts the condition (2.26), proving (4.58), (4.59).
The proof of (4.60), (4.61) is identical. 0
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Observation 4.8 Due to Lemma 3.13, it is easy to see that

p+(x,k) = p+(x,-k), (4.72)
p_(x,k) = p-(x,-k), (4.1)

for all x E R and k E C+ .For real k, equalities (4.72), (4.73) assume the form

p+(x,k) = p+ (x,-k), (4.74)

p_(x,k) = p_(x,-k). (4.75)

Indeed, combining the complex conjugate of (3.501 with that of (3.52), we obtain
the ODE

(p+(x, k)) -i(-'k (p+(x, k) -(1 + q(x)) (4.76)

subject to initial condition

p+(O, k) = 1. (4.77)

Now, replacing k by-. in (3.50) -:nd (3.52), we have

p+(x,--k) = -i(-k)(p+(x,-k)2 - (1 + q(x)), (4.78)

and p (+(, = 1. 
(4.79)

We notice that p+(x, k), p+(x, -k) satisfy identical differential equations (4.76),
(4.78) with identical boundary conditions (4.77), (4.79), from which (4.72)
follows. A similar calculation proves (4.73).

4.2 Smoothness and Asymptotics

The following two technical lemmas describe the asymptotic behavior of the func-
tions 0+, 0- (see Corollary 3.11 in Chapter 3), 0+ and 0- at large frequencies.
They will be used in proofs of Theorems 4.14, 4.18, describing the high-frequency
asymptotics of the impedance functions p+, p-_. Theorems 4.14, 4.18 are in turn
used in the following chapter to derive the trace formulae (4.194), (4.198), which
are the principal analytical tool of this thesis.

Lemma 4.9 Suppose that for any a > 0, the region K(a) C C is defined by the
formulae

K(a) = {kfk E C, Im(k) > 0, Ikf > a}. (4.80)

Suppose further that q E co([0, 11), q(x) > -1 for all x E R, and the second
derivative of q is absolutely continuous. Then there exist real numbers A >
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0, c > 0 such that

0k,+(t, k) = (k)e ik(t- T1) (1 + f (r)dr + e+(t, k)), (4.81)
(1)d + 5+(tk , 4.2

0'_(t,k) = ik (k)e ik(t - T) ( + 1 j (,r)dr + 6+(t, (4.82)1 t
4_(t, k) = e- ikt (1 + q (r)dT + E-(t,k) (4.83)

tL(t, k) = ike-ikt (1 + . j'(r)dr + 5(t,k)), (4.84)¢'(tk) =-ik k  i

with (k): C --+ C, T > 0 defined by (3.39), (3.38) (see Corollary 3.11 in
Chapter 3), and E+, c-, b+, b- : R x K(A) ---* C continuous functions such that

If+(t,k)I < c-k-',  (4.85)

lb+(t,k)I < c.k (4.86)

le_(t,k)l < c*k (4.87)

I8_(t,k) < c. k-. (4.88)

for all (t, k) E R x K(A).

Proof. Since the proofs of this lemma for +, 44 and for ¢_, 4" are identical,
we only prove it in the case of ¢_, 4'. Introducing two auxiliary functions m, n:
R x C -+ C by the formulae

m(t,k) = ekt0_(t,k), (4.89)

n(t, k) = - 1eikt4' (t, k) (4.90)
i k

and combining (3.35), (3.37) with (4.89), (4.90), we observe that m satisfies
the equation

m"(t, k) - 2ikm'(t, k) = -77(t)m(t, k) (4.91)

(77 E co([0, T1]) is absolutely continuous, see (3.27) for the definition of 77) subject
to the initial conditions

m(0, k) = 1, (4.92)

m'(0, k) = 0. (4.93)

Multiplying (4.91) by e- 2ikt and integrating the result from 0 to t, we have

m'(t, k) = - r(r)e2ik(t-,r)m(r, k)dr. (4.94)
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Integrating (4.94) from 0 to t, we obtain the second kind Volterra integral equa-
tion for m

m = Fk(m) + 1 (4.95)

with the mapping Fk: c(R) - c(R) defined by

1 t
Fk(f)(t) - 1 7o7(7-)(1 - e2ik(t-r))f(r)dr. (4.96)

Combining (4.94) with (4.89), (4.90), we observe that

n(t, k) = m(t, k) - , j 7(r)e2ik(t_)m(r, k)dr. (4.97)

Since 7 E co0, Tj]), the function 7(r)(1 - e2ik(t - , ) ) is bounded for all real t, r
and k E K(0). Therefore, there exists a real number cl > 0 such that

Cl

IIFkII < -, (4.98)

and hence there exists a real number A > 0 such that

IIFII < 1 (4.99)

for all k E K(A). Now, according to Lemma 3.1, for all (t, k) E R x K(A),
the unique solution of (4.95) can be approximated by the Neumann's series
truncated at the second term

1 t
m(t,k) = 1 + , i77(r)(1 - eik( -))dT + c(t, k)

= 1+-1 ft (r)dr + #(t, k) + a(t, k) (4.100)

with a, /3: R x K(A) -- C such that

VI1 <c (4.101)

(see Lemma 3.1), and

6(t, k) = 2ik 7 r.(r)e2ik(t-)dr. (4.102)

Since q" is absolutely continuous and q(x) = 0 for all x <_ 0, we observe that 77
is absolutely continuous and 7(x) = 0 for all x < 0 (see (3.27) in Lemma 3.9).
According to Lemma 3.3, there exists c2 > 0 such that

I0(t,k)l <5 ,,-4 (4.103)
Jkl2-
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for all x E [0, 1], k E C+ . Now, combining (4.100) with (4.101) and (4.103),
we observe that there exists c3 > 0 such that

m(t, k) - ( + t Jo ?r()dr) l _E3 (4.104)

for all (t, k) E R x K(A). Similarly, there exists c4 > 0 such that

]n(t,k)(- 1+ ft 7(')d_)I < C4 (4.105)

due to (4.97), (4.104).
Now, (4.83), (4.87) follow immediately from (4.104), (4.92), and (4.84),

(4.88) are a direct consequence of (4.105), (4.93). 0

Lemma 4.10 Suppose that q e c ([0, 1]), - -> 2, q(') is absolutely continuous
and q(x) > -1 for all x E R. Then for any integer 1 < I < -y, the l-th interate
ml : R x C + -- C defined by the formulae

mo(t, k) = 0, (4.106)
mi(t, k) = 1 + Fk(ml-1)(t, k) (4.107)

1 + 7 j7(r)(1 - e2i"(t-))ml_,I(r, k)dr (4.108)

(see (4.95), (4.96)) assumes the form

mi(t, k)- 1 + aj(t) + a,(t, k) (4.109)

with aj : R -- R, j = 1,.....,7f- 1, a-, : R x C + --+ C such that

dx3-j 
(4.110)

are bounded and absolutely continuous for all x E R, j = 1,..., - 1, and

a(t, k) (4.111)

is bounded and absolutely continuous function of t for all (t, k) E R x C+ .

Proof. We prove this lemma by induction. For 1 = 1, formulae (4.106),
(4.108) yield

mi(t,k) = 1 (4.112)

for all (t, k) E R x C+ , which is already in the form (4.109) satisfying conditions
(4.110), (4.111).
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For I > 1, assuming that ml(t, k) is in the form (4.109) satisfying conditions
(4.110), (4.111), we obtain m1+1 using (4.108):

m+ 1(t, k) 1+ 7( , r()(1 - e2ik(t-r))m(r, k)dT
= 1 +I±(t,k)+ I2(t,k)+ I 3(t,k)+ I 4(t,k) (4.113)

with Ij : R x C + --+ C, 1 < j < 4 defined by the formulae

I,(t, k) = 1 + n(T)dr + (- ) 1 ?l(T)aj-i(r)dr, (4.114)2ik J0 2k] Jo

1 k) =7(r)(1 - e2 ik(t-}))dr, (4.115)2ik J

13 (t, k) = -E i (~ t j (r)a,_(T)e 2ik(t-r)dr = - J,(t, k),(4.116)I3 tsk) = 2 s z=2

12, k) = 1 j 77(r)a-(r)(1 - e2ik(t-7-))dr. (4.117)

Clearly, we only need to show that I,, 1 < j < 4 can be expressed in the form

2( ) ai(t) + ( a &(t, k) (4.118)
j=l i i

with aj : R --- R, 1 < j < y-1 satisfying condition (4.110) and a, : RxC + --+ C
satisfying condition (4.111). Obviously, I and 14 are already in the form (4.118).
We now use Lemma 3.3 to show that 12,13 can also be expanded in the form
(4.118). Observing that 77(t) = 0 for all t (0, T1 ), 77(,-2) is absolutely continuous
(see Lemma 3.9), and that aj 1 < j _ -y - 1 are absolutely continuous (due
to the assumption of the induction), we can use formula (3.5) in Lemma 3.3 to
expand 12 and each term J, (s = 1,..., f - 1) of 13 as

I2(t, k) = q - r(j-2)(t) + 2 bi(t, k), (4.119)

j=22

JM(t, k) = (1)' 7 r7(r)a.- (T)e2ik(t-r)dr (4.120)

= -( b(t, k) (4.121)

with b. : R x C+ - C uniformly bounded on R x C+ (see Lemma 3.3). Therefore,
12 is in the form (4.118) due to (4.119), and 13 is of the form (4.118) due to
(4.121), (4.116). Thus, m1+1(t,k) can indeed be written in the form (4.109)
satisfying conditions (4.110), (4.111). 0
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Corollary 4.11 Suppose that for any a > 0, the region K(a) C C is defined by
the formulae

K(a) = {klk E C, Im(k) -> 0, Jkl > a}. (4.122)

Suppose further that the functions m, n, m., ny : R x C+ -- C are defined by the
formulae (4.89), (4.90), (4.108) and

ny(t, k) = m-y(t, k) - I r,(r)ek(t_,)m,(r,k)dr (4.123)

respectively. Then under the conditione of the preceding lemma, there exist posi-
tive numbers A, c1, c2, c3 such that

Im(t, k) - mrn-,(t, k)I <41, c2 (4.124)

In(t, k) - n,(t, k)1 _ 2  (4.125)

for all (t,k) E R x K(A), and

n(t,k) _ 1 _ (4.126)

m(t, k) - kI"

for all (t,k) E [Ti, oo) x K(A).

Proof. Due to (4.98), the norm of the integral operator Fk in (4.108) is
of the order O(Ik - ') for any k E C+ , from which we observe that there exists
A > 0, such that (4.124) is true.

Subtracting (4.123) from (4.90), we obtain

n(t, k) - ny(t, k)

m(t, k) - m,(t, k) - 1 j q(T)e 2ik(t-)(m(T' k) - m.,(r, k))d(4.127)

Now, the estimate (4.125) is a direct consequence of (4.127), (4.124) and the
fact that in (4.127), the expression

1 (4.128)

is uniformly bounded for all k E K(A), -oo < r < t < 0.

We now prove (4.126) by showing that there exists a positive number c3 such
that

n..(t, k) - 3m.tk 1 _L_ (4.129)
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for all (t,k) E [Ti,oo) x K(A). According to Lemma 4.10, m,(t,k) can be
expressed in the form

m.y(t, k) = 1 + 2-) a1 (t) + ( )' a, (t, k), (4.130)
:1=l

with a,j = 1,... ,y satisfying conditions (4.110), (4.111). Therefore, we can
assume that the constant A has been chosen such that for all (t, k) E R x K(A),

1

]m(t, k)I > 1. (4.131)

Combining (4.123) with (4.130), we obtain

n,(t, k) = m-y (t, k) + 12(t, k) + 13(t, k) + Is(t, k), (4.132)

with 12, I3 (t, k) defined by (4.115), (4.116), and 15(t, k) defined by the formula

I 5(t, k) = 1) 1' 7(r)a-,(7, k)e 2ik(t-r))dr. (4.133)

Noticing that 7(t) = 0 for all t > Ti, we have

12(t,k) = )bil(t,k), (4.134)21)k
J,(t,k) = 1- b,(t,k) (4.135)

for all (t, k) E [TI, oo) x K(A), due to (4.119), (4.121). Consequently, there
exists c > 0 such that

I (t,k)+ ) (t,k)+It, k)t, k (4.136)

for all (t, k) E [T1 , oo) x K(A), since ay(t, k), b,(t, k) are bounded for all (t, k) E
[T 1, oo) x K(A), and s= 1,...,- 1.

Now, (4.129) follows immediately from (4.132), (4.136) and (4.131). The
estimate (4.126) is a direct consequence of (4.129), (4.124) and (4.125). 3

Lemma 4.12 Suppose that q E c ([0, 1]), y _> 2, q(") is absolutely continuous
and q(x) > -1 for all x E R. Then there exists a positive number c such that

Ip-(x, k) - 11 < c-.l (4.137)

for all x > 1, k E C + .
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Proof. According to Corollary 3.11 and formula (3.41),

' = (t, k)p- (x, k) (4.138)

for all t > T (i.e., for all x > 1), k E C+ . According to (4.89), (4.90) and
(4.138)

p-_(x,k) = m(t,k) (4.139)
n(t,k)

for all t > T1, k E C +. Now, the lemma follows immediately from (4.139) and
(4.126). 0.

Remark 4.13 By a similar calculation, one can show that under the conditions
of the preceding lemma, there exist positive numbers A > 0, c > 0 such that

Ip+(x,k)-1: cI_ (4.140)

for all x < 0, k E C+.

Theorem 4.14 Suppose that q E c0([0, 1), q(x) > -I for all x E R and q" is
absolutely continuous. Suppose further that

D = {(x,k)Ix E R, Im(k) > 0}. (4.141)

Then
(a) 0+ and 0- are continuous functions of (x, k) and analytic functions of k for
all x E R and k E C;
(b) p+ and p. are continuous functions of (x, k) and analytic functions of k in
D;

(c) there exists a positive number c such that for all (x, k) E D

q'(x) 1
p+(x,k) = V/1 + q(x)- 4 ( 1  ()) -i- + c+(x,k), (4.142)

px~) 14 ( + 1~))
p-(x,k)=4(1 + q(x)) "-k + -(x, k), (4.143)

with f+, e- D --+ C continuous functions such that

If-+(Xk) < 1 , (4.144)

Ie-(x,k)I - (4.145)
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Proof. We only give the proof for 0-, p- since the proof for 0+, p+ is identical.
We introduce two auxiliary functions 0 and 01 via the formulae

¢(x,k) = ¢_(x,k), (4.146)

¢I(x,k) = q'_(x,k), (4.147)

so that the equation (2.1) and the initial condition (2.5) for 0- can be rewritten
as a system of linear ODEs

0'(x,k) = ¢1(x,k), (4.148)
0'(x,k) = -k 2 n2 (x)¢O(x, k), (4.149)

subject to initial conditions

0(0, k) = 1, (4.150)

01(0, k) = -ik. (4.151)

According to Lemma 3.6, q, 01 are continuous functions of (x, k) and entire
functions of k for all x E R and k E C, from which (a) follows immediately.
Similarly, we obtain (b) by combining (a) with (2.16) and the fact that 0_(x, k) #
0 for all (x, k) E D (see Remark (4.3), Lemma 4.4 and Corollary 4.7).

The expansion (4.143) and the estimate (4.145) follow immediately from
(3.41) (see Corollary 3.11 in Chapter 3), (4.83), (4.84), (4.87), and (4.88) (see
Lemma 4.9). 0

Corollary 4.15 Denote by p p+ or p-. Then under the conditions of the pre-
ceding theorem, there exist positive number cI, c2 such that

e2ik ft p(-,k)dr I cl, (4.152)

for allt,XE [0,1], k ER, orforallO<t<x < 1, kE C+ , and

Ip'(xk) < c2, (4.153)

for all x E R, k E C + .

Proof. Due to Statements (b), (c) of Theorem 4.14, the real part of the
function 2ik f p(-r, k)d" 

(4.154)

is uniformly bounded from above for t, x E [0, 1], k E R, or for all 0 < t < x < 1,
k E C + , from which (4.152) follows immediately. Estimate (4.153) is a direct
consequence of Statement (c) of Theorem 4.14, and formulae (3.50), (3.51). 0

Global upper and lower bounds for the impedance functions will be established
in Theorem 4.17. We first obtain a partial result in the following lemma.
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Lemma 4.16 Suppose that for any positive numbers a, a, the domain K(a, a) C
C is defined by the formula

K(a,a) = {klk E C, Re(k) E [-a,a],Im(k) E [0,a]}. (4.155)

Then under the conditions of the preceding theorem, for any A > 0, there exist
positive numbers B, b, 6 such that

Ip+(x,k)I B, (4.156)

Ip_(x,k)j < B, (4.157)

Re(p+(x,k)) > b, (4.158)

Re(p_.(x,k)) > b, (4.159)

in the domain R x K(A, 6).

Proof. Since the proof of (4.156), (4.158) is identical to that of (4.157),
(4.159), we only provide the latter. Denoting by u, v the real and imaginary parts
of p- so that

p-_(x, k) = u(x, k) + iv(x, k), (4.160)

the Riccati equation (3.51) for p- can be rewritten in the form

u' = -2kuv, (4.161)

v/ = -k(v 2 - u2 + n2 ), (4.162)

for any k E R. Integrating (4.161) on interval [0, x] and observing that

u(x,k) = p-_(x,k) = 1 (4.163)

for all x < 0, k E C (see (3.53)), we have

u(x, k) = e2kv(t 'k)dt > 0 (4.164)

for all x, k E R. For any A > 0, p, u = Re(p_) are continuous functions of (x, k)
in the compact domain [0, 1] x K(A, b). Therefore, there exist positive numbers
bl, 6, B1 such that

u(x,k) 2! b,>0 (4.165)
lp-(x ,k)l 1_< B, (4.166)

for all (x, k) E [0, 1] x K(A, 6), which proves the estimates (4.157), (4.159).
We now prove the estimates (4.157), (4.159) for all x > 1 using the formula

1 -b!_(k) + i2b_(k)sin(kx-a-(k)) (
1 + b- (k) + 2b-_(k) cos(kx - a-_(k)) (
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(see Remark (2.2)). According to Remark (2.2), b(k) > 0 is a real-valued
continuous function of k E C. We observe that

0 < b(k) < 1 (4.168)

for all k in the close domain K(A, 5) since otherwise if b(k) > 1, the real part of
p_(1, k)

u1k) 2 1 Vb (k) (4.169)u(1, k) = 1 + b2_(k) + 2b(k)o~x a()

_()2b_..(k) cos(kx - a- (k))(469

will be non-positive, contradicting (4.165). Due to (4.168), (4.167), there exist
positive numbers b2 , B 2 such that

u(x,k) > b2, (4.170)

Ip_ (x,k)I < B2 , (4.171)

for all x > 1, k E K(A, 6).
Now, (4.157), (4.159) follow immediately from (4.165), (4.166), (4.170),

(4.171), and (4.163). 0

Theorem 4.17 Suppose that q E cg([0,1]), q(x) > -1 for all x E R and the
second derivative of q is absolutely continuous. Then there exist real numbers
B > 0, b > 0 such that

Ip+(x,k)] < B, (4.172)

Ip_(x,k)1 < B, (4.173)
Re(p+(x,k)) > b, (4.174)

Re(p-_(x,k)) > b, (4.175)

in the domain
D = {(x,k)Ix E R, Im(k) > 0Q. (4.176)

Proof. Since the proof of (4.172), (4.174) is identical to that of (4.173),
(4.175), we only provide the latter. According to the high-frequency asymptotics
(4.143) in Theorem 4.14, there exist positive numbers A, b, such that

Re(p-_(x,k)) > b1, (4.177)

in the domain D1 C D defined by

D, = {(x,k)Ix E R, Ik I A, Im(k) > 0}. (4.178)

Since p-_(x, k) is a continuous function of (x, k) E D1, there exists a positive
number B1 such that

Ip- (x,k)l n5 B, (4.179)
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for all (x, k) E D1 . For such a number A > 0, according to Lemma 4.16, there
exist positive numbers 6, B 2, b2 such that

Ip_.(x,k)j _< B2 , (4.180)

Re(p_ (x, k)) _> b2 , (4.181)

in the domain D 2 C D defined by the formula

D2 = {(x,k)Ix E R, Re(k) E [-A,A],Im(k) E (0,6]}. (4.182)

Now, according to Lemmas 4.5, 4.6, there exist positive numbers B3, b3 such
that

jp- (x, k)[ 1 B3, (4.183)

Re(p-(x, k)) > b3, (4.184)

in the domain D3 C D defined by

D 3 = {(x,k)Ix E R, Re(k) E [-A,A],Im(k) > 6}. (4.185)

The estimates (4.173), (4.175) for (x, k) E D follow immediately from the
estimates for (x, k) E D 1, D2, D3 since D = D1 U D 2 U D3 . 0

The following theorem furnishes the analytical apparatus for the error analysis
of the truncated trace formula (see (4.198)).

Theorem 4.18 Suppose that q E c([O, 1]), m > 2, q(mn) is absolutely continuous
and q(x) > -1 for all x E R. Then there exists a positive number a such that

Ip+(x, k) p- p(x, k) a (4.186)

for all (x, k) E R x C+ .

Proof. According to Lemma 4.12 and Remark (4.13), (4.186) is true for all
x 1 (0,1). In order to prove the theorem for x E (0, 1), we observe that Fj and
p. obey the same Riccati equation (3.51) due to (3.50), (3.51). The difference,
s = - p., satisfies the ODE

s'(x, k) = ik (p"- + p-) s (4.187)

with the solution

s(x, k) = e - ik fd(,+(,,)+_(t,.k))dts(0, k). (4.188)
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Corollary 4.15 indicates that there exists constant b > 0 such that

e-k f;(p+(t,k)+p_(t,k))dt (4.189)

for all (x, k) E [0, 1] x R. Due to Remark (4.13), there exists a positive number
c such that for all k E R,

Is(0, k)I = Ip+(0, k)- p_(0, k)I = jp+(0, k) - 11 < l-. (4.190)

Now, (4.186) for x E (0, 1) follows immediately from (4.188), (4.189), (4.190).

4.3 Trace Formulae

In this section, we prove Theorem 4.19, which is both the purpose of this chapter,
and the principal analytical tool of this thesis. Theorem 4.19 describes the so-
called trace formulae for the impedance functions p+, p. (for a more detailed
discussion of the term "trace formulae", see, for example, [7]). In fact, only the
formula (4.194) is to be used by the reconstruction algorithm of the following
chapter. We present the formulae (4.191), (4.192), (4.193) for completeness,
since some of them appear to be well-known, and attempts have been made to use
them in reconstruction algorithms (see, for example, [8]). See also Section 5.1
below for a more detailed discussion of the use of trace formulae in reconstruction
schemes

Theorem 4.19 (Trace formulae) Suppose that q E c([0, 1]), m > 2, q(m) is
absolutely continuous and q(x) > -1 for all x E R. Then
(a)

1 r1+q(x) = lim -a p+(x,k)dk. (4.191)

(b)
2

q'(x) = lim -. (1 + q(x)) k . p+(x, k)dk. (4.192)

(c)
f i ~ ~ z) = li m 1 a,

+ q (X) = a- T a(p+ (x, k) + p_(x, k))dk. (4.193)

(d)
q'(X)= (1 + q W) (p+(x, k)-p(x, k))dk. (4.194)

-(W ~x)k
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More precisely, there exist positive numbers cl, c2, c3, c4 such that

1 + q(x) - p+(x, < -, (4.195)
2a I a

q'(x) - 2-(1 + q(x) k. p+(x, k)dk (4.196)
a f)) ad(4.1

C3
1l + q(x) - - J(p+(x,k)+p_(x,_< -2 (4.197)

'(x) - (1 + q(x)f (p+(x,k)-p_(x,k))dk c4 (4.198)
7r-- a(m - l)"

for all x E R.

Proof. Since the proofs of trace formulae (a),(b),(c), and (d) are similar, we
only present that of (d). According to statement (c) of Theorem 4.14, there
exists c > 0 such that

(p+(x, k) - p_(x, k)) - (2(1 x))ik) -  (4.199)

for all (x, k) E R x C + . Denoting by F the upper half circle of radius A, with
clockwise orientation, in the complex k-plane, i.e.,

r = {klk E C+ , Ikf = Al, (4.200)

and noting that p+ - p- is an analytic function of k E C + , we obtain

j(p+(x,k)- p-_(xk))dk = j (p+(x,k)- p-_(x, k))dk. (4.201)

Substituting (4.199) into (4.201), we have

r ArqA (p+(x, k) - p_(x, k))dk - 7r q'(x) + O(k-1) (4.202)
i-A 2(1 + q(x))±Ok) (42)

from which (4.194) follows immediately.
In order to prove the estimate (4.198), we rewrite (4.194) as

q'(x) = -(1 + q(x)) (p, (x, k) - p. (x, k))dk + I(a) (4.203)

with I(a) given by the formula

I(a)= 2(1 + q(x)) + (p+(x, k) - p-(x, k))dk. (4.204)
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Now, formula (4.74) implies

i(a= 2 ( + x)) (L-a + ) (x, k) - p.-(x, k)) dk, (4.205)

and according to (4.186), there exists a constant c4 such that

II(a)I < ikml_), (4.206)

from which (4.198) follows immediately. 13



Chapter 5

The Reconstruction Algorithm

5.1 Reconstruction via trace formulae-an in-
formal description

An examination of the formulae (4.191)- (4.194) in combination with the Riccati
equations (3.50), (3.51) immediately suggests an algorithm for the reconstruc-
tion of the parameter q given the impedance function p+ (xo, k) measured at some
point x0 E R outside the scatterer. Namely, one is tempted to substitute one of
the formulae (4.191)- (4.194) (for example, (4.191)) into (3.50), obtaining

(a (
and attempt to view (5.1) as a differential equation for the function p : R' x R-.
C.

Needless to say, standard existence and uniqueness theorems are not appli-
cable to 'differential equations' of the form (5.1). Furthermore, in order to be
numerically useful, the integral in (5.1) would have to be replaced with some
finite quadrature formulae. The latter procedure is significantly complicated by
the fact that the function p+ is defined on the whole real line, and its domain of
definition has to be truncated before discretization. It turns out that the solution
of (5.1) is not unique, except in a very carefully chosen class of functions p. Such
a class of functions has been successfully specified (see, for example, [8]). The
resulting numerical scheme is, however, quite expensive, and the construction is
not rigorous, though we believe that this could be made so. The same prob-
lem arises if one attempts to use the trace formulae (4.192), (4.193), and the
conceptual reason for this situation is summarized in the following observation.

36



5.1. RECONSTRUCTION VIA TRACE FORMULAE-AN INFORMAL DESCRIPTION37

An immediate consequence of the formula (4.191) is

V1.++i 'a=-im,1 p+(x,k)dk + fap+(x,k)d , (5.2)

a- 2ak]

for any positive real b. Thus, the 'differential equation' (5.1) can be replaced
with

p+(x, k) - (xk) ( r a p+(x,k)dk ++(x,k)dk)

(5.3)
and a convergence, uniqueness, etc. proof valid for (5.1) would also be valid for
(5.3), unless some extremely subtle phenomenon interfered.

However, given a smooth scatterer q, for any e > 0, one can choose a suffi-
ciently large b that

for any k > b. If the scattered data p+(xo, k) have been collected at some point
x0 outside a smooth scatterer, (5.4) assumes the form

11 - p+(xk)l <-- (5.5)

In other words, a reconstruction algorithm using the 'differential equation' (5.3)
with a sufficiently large b would effectively reconstruct the parameter q(x) for all
x E [0, 1] from a single measurement, the latter being equal to 1 (!). Another
way to make this observation is to notice that the formula (4.191) is simply the
WKB approximation to the impedance function p+, and that in the WKB regime,
the back-scattered field is absent. A similar problem arises if one attempts to
combine formulae (4.192), (4.193) with (3.50), and view the result as a "system
of ordinary differential equations".

In the case of a discontinuous scatterer q, the WKB expansions (4.142),
(4.143) are invalid. On the other hand, the trace formulae (4.191), (4.194)
are valid (if the limits in these formulae are interpreted properly), and can be
combined with the equations (3.50), (3.51) to obtain a numerical scheme for
detecting discontinuities in the scatterer. If q is piece-wise constant, such a
scheme will reconstruct it effectively, and time-domain versions of this procedure
are known as layer-stripping algorithms (see, for example, [12], [13], [141).

While the author failed to find the trace formulae (4.192), (4.193) in the
literature, they appear to be well-known among specialists, being an immediate
consequence of the WKB analysis of the equation (3.50). On the other hand, the
formula (4.194) does appear to be new, and its combination with the equation
(3.50) immediately leads to a robust reconstruction algorithm. While we post-
pone a detailed construction and analysis of such a scheme till Section 5.2, in



38 CHAPTER 5. THE RECONSTRUCTION ALGORITHM

the following observation we summarize the conceptual reasons for its analytical
and numerical effectiveness.

Formula (4.198) means that approximating the trace formula (4.194) with
its 'truncated' version

q ,(1 + q(x)) j(p+(x, k) - p-(x, k))dk, (5.6)

we make an error of the order a - (m- ), where m is the smoothness of the scatterer.
Thus, for a sufficiently smooth scatterer and a sufficiently large a, (5.6) is an
extremely good approximation to the trace formula (4.194).

Now, for the system of equations (3.50), (3.51), (5.6), it is not hard to
prove existence, uniqueness, etc. theorems of the type valid for systems of ODEs
(since now for a fixed value of x, the functions p+(x,k),p_(x,k) : [-a,a] -- C
are defined on a compact interval, as opposed to the whole line). The remainder
of this thesis is devoted largely to proving such facts (see Theorem 5.1 below),
and to a numerical implementation of the resulting procedure. The latter is also
quite straightforward, since it only involves constructing a quadrature formula
for the evaluation of the integral in (4.194), where it is taken over an interval
of finite length. Furthermore, for all practical purposes, the integrand vanishes
at the ends of the domain of integration together with all its derivatives, com-
pletely obviating the issue of the choice of the quadrature formula, and leading
to extremely accurate numerical procedures (see Remark 6.3 below).

5.2 Reconstruction via trace formulae-a for-
mal description

Now, we are prepared to construct a system of integro-differential equations
whose initial conditions are the values of the impedance functions p+, p. mea-
sured outside the scatterer, and whose solution reconstructs the potential q for
all x E [0,1]. We will consider a system of integro-differential equations

p'+ (x,k) = -ik(p.+(x,k) -(1 +q,(x))), (5.7)
p'(x,k) = ik(p2(x,k) - (1 + qa(x))), (5.8)

qa x) = 2I + q,,a)) ,+(xz) - p.-(x, z))dz, (5.9)

with respect to the functions pA+,pa- [0, 1] x [-a, a] --+ C, qa : [0,1] --+ R,
subject to the initial conditions

p.+(0, k) = po(k), (5.10)

p,,-_(0,k) = 1, (5.11)
q(0) = 0. (5.12)
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It turns out that for sufficiently large a, the system (5.7)-(5.12)has a unique
solution for all x E [0, 1], that this solution is stable with respect to small per-
turbations of the initial data po(k) , and that q, converges to q as a -+ cx. The
following theorem and Lemmas 5.2-5.4 formalize these facts.

Theorem 5.1 (Convergence !of the inversion algorithm) Suppose that q E c([0, 1])
m > 4, q(m) is absolutely continuous and q(x) > -1 for all x E R. Then there
exist constants A > 0, c > 0 such that

Iq(x) - qa(x) I a (5.13)
a(m-1) (.3

for all x E [0, 1], a > A.

Since the proof of this theorem is quite involved, we break its technical part
into three lemmas which are then directly used in the proof of Theorem 5.1.

Lemma 5.2 Suppose that q E c;'([0, 1]), m > 4, q(m) is absolutely continuous
and q(x) > -1 for all x E R. Suppose further that the function space E is defined
by the formula

E = {[a,,8,7]la, e c([0,1] x [-a,a]),-y E c([0, 1])}, (5.14)

equipped with the norm

Ilfl = max (IIalI, 1I1 11, I111I), (5.15)

with f = [a, 08, /] E F. Finally, suppose that for any a > 0, the functions
fa, w, ea : R --+ R are defined by the formulae

fa(x) = 2 (p+(x,k) - p-(x,k))dk, (5.16)

w(X) = 2-(1 + q(x)), (5.17)
ir

fa()= -w(x) ( + ) (p+(x,k) -p- (x,k))dk. (5.18)

Then the error function u = [e+, e-, h] E E defined by the formulae

e+(x,k) = p.+(x,k)-p+(x,k), (5.19)

e_(x,k) = pa-(xk)-p_(xl), (5.20)

h(x) = qa(x) - q(x) (5.21)

satisfies the equation

L(u)(x, k) = N(u)(t, k) + [0,0, fC(t)], (5.22)
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where L, N: E -E are defined by the formulae

e+(x, k) - ik fo h(t)e - 2ik ft p+( k)ddt
L (u) =e_(x, k) + ik f0' h(t)e 2ik ft Tp-(T"k)d'dt (5.23)

h(x) - fox (h(t)f:(t) + w(t) f2a(e+ - e-)(t,z)dz) dt

-ik f0 e+(t,k)e-2' t P+(T,'k) drdt
N(u) = t f , 2k)e+ik fJ ("t~eit p((,k t (5.24)

ik fo-e-(tk)etfP2kdd
2 fox h(t) f.:(e+(t, z) - e_(t, z)dzdt

Proof. We know that the functions p+, p., q satisfy the ODEs

p+(x, k) = -ik(p2(x, k) - (1 + q(x)), (5.25)

p,_(x,k) = ik(p2(x,k)- (1 + q(x)), (5.26)
q'(x) = 2 (p+(x,k) - p-_(x, k))dk, (5.27)'()=-(1 q o)o_(+x

for all x E R, any k E C+ , and that the functions Pa+,p._, qa satisfy the ODEs

p'+(x,k) = -ik(p2+(x, k) - (1 + q.(x))), (5.28)

p,,_(x,k) = ik(p_(x,k) - (1 +q(x))), (5.29)
q 'x) £(1 + q(x))j(Pa+(x'z) - (5.30)

for all (x, k) E [0, 1] x [-a, a], subject to initial conditions

pa+(0,k) = p+(0, k), (5.31)

pA_(0,k) = p-(0,k) = 1, (5.32)

qa(0) = q(0) = 0. (5.33)

for all k E [-a, a]. Subtracting equations (5.25), (5.26), (5.27) from equations
(5.28), (5.29), (5.30) respectively, we observe that [e+, e, h] (see (5.19), (5.20),
(5.21)) satisfies the ODEs

e,(x,k) = -ik (2p+(x,k)e+(x,k) + e 2(x,k) - h(x)), (5.34)

e'_(x,k) = ik (2p_(x,k)e_(x,k) + 2_(x, k) - h(x)), (5.35)

h'(x) = h(x)fa(x) + w(X) (e+(x, z) - e(x, z))dz

+ h(x) J(e+(X, Z) - e_- (x, z))dz + Co(a), (5.36)

subject to the initial conditions

e+(O, k) = e_(0, k) = h(O) = 0. (5.37)



5.2. RECONSTRUCTION VIA TRACE FORMULAE-A FORMAL DESCRIPTION41

We now convert the initial value problem (5.28)-(5.33) as a system of integral
equations. Multiplying (5.34) by the function

e 2ik f,,' p+ (t,k) dt (5.38)

we have

d (e2ikf p+ (t k)dte (x k))" i k 2ik fxp+ (t,k)dt (2 ( 7k - x) . (5 39)
dx eex, =-k oe+(x )-hxj

Integrating the result over the interval [0, x], we obtain

e+x k)ij -)2ikft~p+(rk)drdt = -ik 2~t k-2ikf p+ (-rk)d-rdt. (5.40)

A similar calculation reduces (5.35) to the equation

e..4x, k) + ik j h(t)e ktP -r)ddt = ikf1 e-.(t, k)e ikt p(T~k)d-rdt. (5.41)

An integration of (5.36) over the interval [0, x] converts (5.36) into the integral
equation

h(x) - j h(t)fa(t)dt -j w(t) f(e+(t, z) -e..(t, z))dzdt

_2jh(t) J_(e+ (t, z) - e-..(t, z)dzdt + j e(t)dt. (5.42)

Clearly, equations (5.40), (5.41), (5.42) is equivalent to (5.22), which completes
the proof. 0

Lemma 5.3 Under the conditions of Lemma 5.2, there exists a positive number
cl such that for any f, g E E, there exist continuous functions bl, b2 : [0, 1] X

[-a, a] -- C, b3 : [0, 1] -+ C such that

N(f )(x, k) - N (g) (x, k) = [b, (x, k), b 2 (x, k), j0 b3(t)dt], (5.43)

and
max (16ill, 11b211, 11b311) ! Cl a -max(11fII1, IIgII) I1f - g~l. (5.44)

Proof. Formula (5.43) is a direct consequence of (5.24). In fact, we have

61(x, k) = -ikfj (f12 (t, k) -g(t, k))Cif t+',~~d,(.5

b2(x, k) = i k j(f22(t, k) -g(t, k))e ikt P..Tk&dt (5.46)

63(X) = 2 La ff3(x)fl _ f2) ( X7Z) - 93(X)(g 1 - 92)(X, z)}dz (5.47)
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for any f = [fl, f2, f3] E E, g = [g1,g 2,g3] E E. In order to prove (5.44), we first
observe that due to Corollary 4.15, there exists a positive number c4 such that

e-2ikf,'P+(rk)dT C4 , (5.48)

e2ikf p(,r,k)d < C4 , (5.49)

for all t,x E [0, 1], k E R. Observing that Iki < a, 0 < x < 1, and using the
estimate (5.48), we obtain the estimate

llill < a c41if + gil 1f - gIl- (5.50)

A similar calculation shows that

11b211 _< a c41if + gil 11f - gll, (5.51)

and we obtain the estimate for 63 by first regrouping (5.47):

116311 - sup t) - g3(t)) (fi(t, z) - f 2(t, z))dz7r XE[0,1] _a

S(11ft _ gII L Ilf + gIdz+ 1±~ fII : 211f - gj1dz)

< a -4f - ghI (11f + gII + 211gII) (5.52)
7r

Now, (5.44) follows immediately from (5.50), (5.51), (5.52). 0

Lemma 5.4 Under the conditions of Lemma 5.2, there exist positive numbers
c2, c3 such that for any 6 E 2 of the form

b(x, k) = [b,(x, k), 62(X, k), J b3(t)dt], (5.53)

the linear equation
L(v) = b (5.54)

has a unique solution v = [v1, v2, v31 e E. Furthermore,

IlvIl <_ C2.a max (Ibill, II211) + c311b311. (5.55)

Proof. We only need to prove (5.55), since the existence and uniqueness of
the solution v of the linear equation (5.54) is a direct consequence of the estimate
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(5.55). Due to (5.23), (5.53), the equation (5.54) can be rewritten in the form

vi(x,k) = ikf v3(t)e-2ikfz p+(T"k)d dt + 61(x,k), (5.56)

v2(x, k) = -ik jo v3 (t)e2 kJt - (1ik)d' dt + 62(x, k) (5.57)

v3(z) = v 3 (t)fa(t)dt + -

V3(X I: J 0XV(~.td o Xw(t) L (VI(t, Z) - V2(t, z)dzdt+ Sob3(t)dt. (5.58)

In order to prove (5.55), we first eliminate v1 , v 2 from (5.58) and obtain an
estimate for v3 . Subtracting (5.57) from (5.56), and integrating the result over
the interval [-a, a], we obtain

LI (X, z) - v2(x, z)) dz
X--a

= f v3(t) f 2Z (eiz f" p+(,z)dT + e2ifz p_(tz)dT dzdt

+ f(6(X, z) - b2(x, z))dz

= j ga(x, t)v3(t)dt + 4a -Sa(X), (5.59)

with ga: [0, 1] X [0, 11 C, Sa: [0,1] - C given by the formulae

ga(x,t) = iz e2 fi ,P+(Z)dr + e2izf, p_(Tz)d-) dz, (5.60)
n1_a

sa(x)- = a (b((x,z)-6 2 (x,z))dz. (5.61)
a_

Combining (5.58) with (5.59), we obtain

V3(X) = j0 V3 (t)fa(t)dt + j0 w(t) j0 ga(t, T-)V 3(Tr)drdt

+4a j w(t)sa(t)dt + fo x(t)dt. (5.62)

We will obtain the estimate (5.72) for v3 (see below) by first proving (5.63),
(5.64), (5.65), and (5.69) for functions fa,W,ga,.5a. Obviously, there exist con-
stants c5 > 0, c, > 0 such that

Iw()I < c5  (5.63)

for all x E R due to (5.17), and

f.(X)j <5 C6 (5.64)
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for all x E [0, 11, any a > 0, due to (5.16), (4.198), and

Io(x)I < max(jib,11, 116211) (5.65)

due to (5.61). Observing that
z - 2iz.T p+(rz)ddz = - e. z ft p+(,z)ddz (5.66)

due to (4.72), and combining (5.60) with (5.66), we have

aga (X, t) = fa iZ (e 2izfxi 4 p(z)dr - 2iz f 1,zd7 dz. (5.67)

According to Theorem 4.18, for any x E R, the function

p-_(x, k) - p+(x,k) (5.68)

decays uniformly like k- m , for k E R, and consequently, the integrand in (5.67)
decays like k- (m- 2) uniformly with respect to t, x E [0, 1]. Since we have assumed
that m > 4, there exists a constant c7 > 0 such that

9a (X, t) 15 C7, (5.G9)

for all t, X E [0, 1], a > 0. Now, combining the integral equation (5.62) with the
estimates (5.63), (5.64), (5.65), (5.69), we have

Iv3(x)l < c6  1v,(t)ldt + cs.crjj Iv3(r)idtdr
+4a ,cs- x max( xib11, 11b211) + 116311

< 0(c 6 + c5 c7)1 3(t)dt + 4a" csxmax(6lI1, 11b211) + 116311 (5.70)

Now, the estimate for v3 follows from Gronwall's inequality (see Lemma 3.5),

1V3(X)l < 4a.c5. xmax(16i1, 11211)+ 11s311

+ cs f (4a . cst max (jilb, I, 11b211) + 1b311) e(X-t)(6+cc)dt, (5.71)

with cS = c6 + c5 - c7. Clearly, there exist positive numbers c9, clo such that

1v3(X)I < C9max(116111, 116211) + c10o11311, (5.72)

for all x E [0, 1], we thus have the estimate for v3 (see (5.55)).
In order to obtain similar estimates for v1 , v2, we first provide an estimate for

the derivative of v3 . Differentiating (5.62), we have

v '(X) =v 3(x)fa(X)dt + w(X) 9(X, t)v3 (t)dt + 4a -w(x)sa(X) + 63 (X). (5.73)

-3 J 0i i i I I I
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Combining (5.73) with (5.72), we observe that there exist positive numbers
c 1 , c12 such that

Iv3(x)I _ clImax(11611, 116211) + C12116311. (5.74)

Integrating by parts in (5.56) yields

1 1- v3(t) •e2k + -~~-
vi (x, k) 2 0 pj v(t) d et + 61 (x, k)

bi x, ) +i (V3(X)= 61(,k)2+ (p+(x,k)
f v'(t)p+(t,k) - v3(t)p+(t, )(575)

3~(t (t p .(t, k) + 2ikp+(-,k)d-dt)

For all (x, k) E R x C+ , p+ is uniformly bounded, Re(p+) is uniformly bounded
from below by a positive number (see Theorem 4.17). Due to Corollary 4.15,
p' and

e- 2ik fp+ (-,k)d- (5.76)

are uniformly bounded for all x, t E [0,1], k E R. Therefore, combining (5.75)
with (5.72), (5.74), (4.152), we observe that there exist positive numbers c13, c14

such that

Ivi(x, k)l . C13 max(16 11, 11b211) + c14116311, (5.77)
and a similar calculation shows that

Iv2(x, k) _ c13max(1611, 1b2I1) + c1411b311 (5.78)

for all x E [0, 1], k E [-a, a]. Now, the estimate (5.55) follows immediately from
(5.72), (5.77), (5.78). 0

Using Lemmas 5.2, 5.3, 5.4, we now proceed with the proof of Theorem
5.1.

Proof of Theorem 5.1. Theorem 4.19 implies that there exists positive
numbers b1, b2 such that

Ifa(x)l I bi, (5.79)

1 )1 Ca a(W-1 )" (5.80)

We prove the theorem by showing that there exist positive numbers A, c such
that for all a > A, the solution u = [e+, e-, h] E E exists (see Lemma 5.2 for the
definitions of u, E), and that

C

lull _ ,( _). (5.81)
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We will obtain the solution u of the equation (5.22) via the following iterative
procedure:

u0 = 0, (5.82)

L(u,,+1 ) = N(u,) + [0,0,(E(t)], (5.83)

with L, N defined by the formulae (5.23), (5.24), respectively. Clearly, we only
need to show that there exist positive numbers A, c such that for all a > A

C

11U.11 <5 (5 84)- a(m-1)'

and the sequence un, n = 0, 1,... converges (to the solution u). The first iterate
ul satisfies the equation

L(ul) = [0, 0, f,(t)], (5.85)

and according to (5.18), (4.198), there exists a constant b such that

6a 11 5 b (5.86)- a (m -1) •

Combining (5.85) with (5.55) and (5.86), we observe that there exist constant
c4 such that

Iluill C,4 (5.87)-a(m-1)•

Now, we choose a constant A > 0 such that

1
a. c&2 .a + c3) jujjj (5.88)

for all a > A. Defining u- 1 = 2u, for convenience, we prove by induction that

IlU,+1 - Ull !5 Hun1 - U,-1l1, (5.89)
IlUn+111 :S 211uill, (5.90)

for all n > 0, a > A.

The case n = 0 is a trivial one. For n > 1, (5.83) indicates that

L(u+ - un) = N(un) - N(un_1), (5.91)

Due to Lemma 5.3, there exist continuous functions 6b, 62 : [0, 1] x [-a, a] -+ C,
b3 : [0, 1] -+ C such that

N(u,) - N(un_) = [b(x,k),$2(x,k),6 63(t)dt], (5.92)
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Now, combining (5.91), (5.92) with (5.55), (5.44), and the assumption of the
induction, we obtain

I]Un+1 - unli <  C2- amax(il1i ,I 116211) + c3116311
< a.- cl(c -.a + c3)max(ilUnJJ, 1l n-1ii) ltun - Un-11[

1<Hun -un-ill, (5.93)

which proves (5.89). The estimate (5.90) is a direct consequence of (5.89).
Finally, the sequence un, n = 0, 1,... converges to the solution u due to

(5.89), and therefore

Hull < (5.94)
a(m-1)'

for all a > A due to (5.90), (5.87), which was to be proved. 0

Remark 5.5 The proof above requires that q E c'(R), with m > 4. At the ex-
pense of a considerable increase in the complexity of the proof, it is not difficult to
extend this result to m > 2. However, our numerical experiments (see the follow-
ing chapter) indicate that the scheme works quite well for continuous, piecewise
continuously differentiable q, and even for piecewise continuously differentiable q
with finite number of jumps. In the latter two cases, the rates of convergence of
the algorithm are 1/a and 1/'a, respectively.



Chapter 6

Implementation and Numerical
Results

6.1 Implementation

In implementing the algorithm of this thesis (see Chapter 5.2), the integral

fa
a(p+,x, k)- p-(x, k))dk (6.1)

in equation (5.9) is approximated by the trapezoidal sum

M-1

T(h) = h E (p+(,kj)-p_(x,kj))
j=-M+I

h
+h((p+(x, -a) -p_(x, -a)) + (p+(x,a) -p-(x,a))), (6.2)

with h = aIM, kj = jh, j = -M,..., M. Since for real k, p+(x, -k) = p+(x, k),
p_(x, -k) = p_(x, k) (see Observation (4.8)), the ODEs (5.7), (5.8), (5.9) are
discretized in the k-space using M + 1 nodes kj = jh, j = 0.... , M, leading to
a system of 2M + 3 ODEs

Ph+ (x, kj) = -ik1 (p +(x, ) - (1 + qh(x))) , (6.3)

ph_(x, kj) = ikj (pL_(x, ki) - (1 + qh(X))), (6.4)
4h k 1

qhW = "--(1 + qh(x)) Re(ph+(x, kj) - Ph-(X, kj))
\j=l

+ Re{ph+(x,O) - ph-(X,O) + Ph+(x, a) h-,(X, a)}) (6.5)

48
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subject to the initial conditions

ph+(O,ki) = po(kj), (6.6)

ph- (0, k) = 1, (6.7)

qh(0) = 0 (6.8)

(see (5.10)- (5.12)). These ODEs are then solved using a standard 4-th order
Runge-Kutta scheme.

When an integral is discretized via a quadrature formula, the rate of conver-
gence of the quadrature is critical to the numerical performance of the algorithm.
It turns out that while the estimate

p+(x,k) - p-_(x,k) = O(a- ' ) (6.9)

(see Theorem 4.18) ensures a rapid convergence of q, to q as a grows (see Theorem
5.1), it also guarantees a rapid convergence of the trapezoidal quadrature (6.2)
to the integral (6.1). This fact is formalized in the following lemma. Its proof is
based on the Euler-Maclaurin summation formula (see, for example, [10]), and is
omitted, since it is quite involved, and incidental to the purpose of this thesis.

Lemma 6.1 Suppose that q E c([0, 1]), m > 2, q(m) is absolutely continuous
and q(x) > -1 for all x E R. Then there exist positive numbers cn, n = 0,...
such that

dn (p+(x,a)-p_(x,a)) __

An :5Jkl M(6.10)

Furthermore, for any / > 0, b > 0, there exists a constant c > 0 such that

I (p(x, k) - p-(x, k))dk - T - - -. (611)

Using the estimate (6.11), and reproducing the proof of Theorem 5.1 almost
verbatim, one can prove the following theorem.

Theorem 6.2 Suppose that q E co'([0, 1]), m > 4, q(7) is absolutely continuous
and q(x) > -1 for all x E R. Suppose further that for given r > O,s > 0,
q(r, s, x) denotes the solution qh of the system (6.3)- (6.8) with h = r/as. Then
for any a > 0, /3> 0, there exist constants A > 0, c > 0 such that

c

Iq(x) - q(a, 3,x) I < (6.12)
f aa(01)

for all x E [0, 1], a > A
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6.2 Numerical Results

We have applied the algorithm of this thesis to the reconstruction of several types
of scatterers, from infinitely differentiable q to discontinuous q. The computations
were performed in double precision on a SPARC 1 computer without the use of
the accelerator. The results of numerical experiments for four classes of scatterers
are presented in this chapter.

In the first class (Examples 1-2.2) are scatterers satisfying the smoothness
conditions of Theorem 6.2. In the second class (Example 3) is a scatterer q vio-
lating the smoothness conditions only mildly (it is continuous, but its derivative
is discontinuous at two points). In the third class (Examples 4.1, 4.2) are scat-
terers that strongly violate the smoothness conditions by being discontinuous.
Finally, in Example 6 a scatterer with an index of diffraction that changes in
several order of magnitude is reconstructed. As is well-known, scatterers of this
type are difficult to recover due to strong back scattering.

We also performed a crude test, in Example 5, of stability of the algorithm
by truncating the scattering data po(kj), j = 1, ... , M after 1, 2, or 3 digits. The
truncated scattering data are subsequently used in reconstructions.

In Tables 6.1- 6.9, hk denotes step size of the trapezoidal rule in the k-interval
[0, a], N denotes the number of points in the x-interval [0, 27r], E2 , E' repre-
sent the relative L2 and maximum norm of error of the reconstructed scatterer,
respectively. In Figures 6.1- 6.15, dotted lines denote the exact solution, while
solid lines denote the numerical reconstruction. In all examples, for a given a, hk
and N. were chosen such that further decrease of hk and increase of N. brought
no improvements on the accuracy of the reconstruction.

Remark 6.3 In order to obtain the scattering data p+(0, k) for the Examples
1-3, the scattered field est+ was obtained as a solution of the boundary value
problem (2.10), (2.8), (2.9) via a high order algorithm described in [15]. The
parameters in the scheme were chosen in such a manner that at least 14-digit
accuracy was always maintained. Formulae (2.4), (2.30) were then used to
obtain p+ (0, k) from 4 scat+.

In Examples 4.1 and 4.2, a standard procedure for the solution of the initial
value problem (2.1), (2.26) (for 0+) with piecewise constant q was used (see, for
example, [16]). Here, the solutions were obtained with at least 15 correct digits.
The scattering data p+ (0, k) were obtained from 0+ via formula (2.30).

Remark 6.4 In the examples below, no effort was made to optimize the code
used, either from the algorithmic or from the programming point of view. For
example, we used the Runge-Kutta scheme to solve ODEs (6.3), (6.4), (6.5).
While it produced satisfactory results in our experiments, it is by no means the
most efficient scheme for the solution of problems of this type.
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a hk N. E 2  E00 t (sec.)
5 0.1 80 0.146 X10 - 2  0.153 X10 - 2  0.600
10 0.1 300 0.354 x10- " 0.415 x10- 5  4.41
10 0.05 600 0.177 x10- 1 0.183 X10 - 5  16.7
10 0.05 1200 0.175 x10-  0.184 x10 - 5  34.2
20 0.05 2400 0.759 x10 - 9  0.108 x10 - " 141
20 0.05 4000 0.988 x10 - 10  0.143 x10- 9  235
20 0.025 4000 0.982 X10 - 10  0.142 x10- 9  498

Table 6.1: CPU Times and Accuracies for Example 1

Example 1. Reconstruction of a Gaussian distribution

q(.) = e-( (6.13)

where the variant o given by the formula

a = 4 1og 1 (e) = 0.5175854235... (6.14)

was chosen such that the function is effectively zero to double precision outside
the interval [0, 27r]. The results of this numerical experiment are depicted in
Table 6.1 and Figure 6.1. For all practical purposes, the scatterer (6.13) is
a c--function in R with the support on the interval [0, 27r], and therefore the
algorithm converges extremely rapidly, as demonstrated in Figure 6.1 where the
two graphs of the exact q and the reconstructed q axe almost identical.

In the following two examples, we reconstruct oscillatory scatterers of the
form

3

q(x) = c1(1 - cos(nix)), (6.15)
j=1

with n,, cj, j = 1,2, 3 given below. For given nj, the coefficients cj were chosen
in such a manner that q is five times continuously differentiable for all x E R,
so that the rapid convergence of the reconstruction algorithm is guaranteed (see
Theorems 5.1, 6.2)

Example 2.1. A less complicated scatterer is given by the formula

q(x) = 0.3 ((1 - cos(2x)) - 16 (1 - cos(3x)) + 5(1 - cos(4x)) (6.16)
21 28

Reconstructions were performed with a = 7, 14. The results of this experiment
are depicted in Table 6.2 and Figure 6.2 Since the scatterer is smooth, p+(x, k)-



52 CHAPTER 6. IMPLEMENTATION AND NUMERICAL RESULTS

1.0

0.5

0.0

0 2 4 6

Figure 6.1: Reconstruction of Example 1 with a = 5

a hk N_ E_2  E0_ t (sec.)
7 0.1 100 0.523 x10- 2 0.983 x10 - 2  1.05
7 0.05 600 0.516 x10- 2 0.833 x10- 2  11.9

14 0.1 300 0.648 x10-4  0.172 x10 - 3  6.04
14 0.05 600 0.568 x10 - 4 0.948 x10 - 4  23.7
28 0.05 2000 0.231 x10- 7 0.625 x10- 7  170
28 0.025 4000 0.106 X10 - 7 0.155 x10-7  243

Table 6.2: CPU Times and Accuracies for Example 2.1
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Figure 6.2: Reconstruction of Example 2.1 with a = 7
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1.0

0.5

0 0 is 20

Figure 6.3: Real Part of the Scattering Data po(k) in Example 2.1
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a hk N. E 2  E- t (sec.)
10 0.1 300 0.288 x10 -1  0.376 x10 - ' 4.41
10 0.025 600 0.281 x10 - ' 0.367 x10 - ' 35.3
10 0.025 1200 0.281 x10 - 1 0.367 x10- 1  70.4
20 0.1 400 0.395 x10 -2  0.754 X10 - 2  11.4
20 0.025 800 0.127 X10 - 2 0.226 x10- 2  98.7
20 0.025 1600 0.127 x10- 2 0.220 x10- 2  197
40 0.025 800 0.788 x10-4  0.300 x10 -3  202
40 0.025 1600 0.878 x10-5  0.290 x10 -4  404

Table 6.3: CPU Times and Accuracies for Example 2.2

a hk N. E_2 E_ _ t (sec.)
5 0.1 75 0.482 x10 - 1 0.829 x10- 1  0.590

10 0.1 150 0.239 x10 - 1 0.462 x10 - 1  2.19
20 0.1 300 0.119 x10- ' 0.283 x10 - 1  8.47

Table 6.4: CPU Times and Accuracies for Example 3

p. (x, k) decays rapidly as k grows. In particular, the scattering data Re(po(k))
approaches 1 rapidly, as can be seen in Figure 6.3.

Example 2.2. A more complicated scatterer is given by the formula

q(x) = 0.4 ((1- cos(3x)) - 121 (1 _ cos(llx)) + 3(1 - cos(12x)) . (6.17)

Reconstructions were performed with a = 10, 20. The results of this experiment
are depicted in Table 6.3 and Figure 6.4.

Example 3. In this example, we reconstruct a scatterer defined by the
formula

q(x) = 0.2 -sin(x). (6.18)

Note that q' is discontinuous at the points x = 0, 2r, and as a result p+ (x, k) -
p(x, k) decays like 1/k, as can be seen in Figure 6.6. We have not proven
a convergence theorem for such scatterers, but the algorithm seems to perform
quite well in this case, and its rate of convergence to be linear (see Table 6.4
and Figure 6.5).

Example 4.1. Here, we reconstruct a scatterer defined by the formula

0.4 ifxE[1,2],
0 otherwise. (6.19)
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Figure 6.4: Reconstruction of Example 2.2 with a = 20
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Figure 6.5: Reconstruction of Example 3 with a = 10
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Figure 6.6: Real Part of the Scattering Data po(k) in Example 3

a hk N E 2  t (sec.)
10 0.4 50 0.165 0.230
20 0.4 200 0.119 1.51
40 0.4 400 0.843 x 10' 6.03

Table 6.5: CPU Times and Accuracies for Example 4.1

In this example, the scatterer is discontinuous, and the conditions of Theorems
5.1, 6.2 are violated. In fact, the integrand p+ - p- does not even converge to
zero as k --+ oo. The results of this experiment are depicted in Figures 6.7, 6.8,
and Table 6.5.

Example 4.2. In this example, we reconstruct a staircase-shaped scatterer
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Figure 6.7: Reconstruction of Example 4.1 with a = 40

1.2

1 20 30 40

Figure 6.8: Real Part of the Scattering Data po(k) in Example 4.1
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a hk N. E2_ t (sec.)
5 0.2 100 0.149 0.430
10 0.2 150 0.936 x10 - 1  1.18
20 0.2 300 0.682 x10- 1  4.40

Table 6.6: CPU Times and Accuracies for Example 4.2

defined by the formula

0 x E (-oo,0.5]
0.1 x E (0.5,1.0]
0.2 x E (1.0,1.5]
0.4 x E (1.5,2.0]
0.6 x E (2.0,2.5]
0.5 x E (2.5,3.0]

q(x) = 0.3 x E (3.0,3.5] (6.20)
0.1 x E (3.5,4.0]
-0.1 x E (4.0,4.51
-0.3 x C (4.5,5.0]
-0.2 x E (5.0,5.5]
-0.1 x E (5.5,6.0]
0 x E (6.0, oo)

This example is similar to the preceding one, but the shape of the scatterer is
more complicated. The results of this experiment are shown in Table 6.6 and
Figure 6.9.

Example 5. We investigate the sensitivity of the reconstruction to perturba-
tions of the initial data. In a somewhat crude test, we perturb the initial data for
the algorithm by truncating it after a specified number of decimal digits (both
the real and the imaginary parts). Clearly, after such a truncation, the maxi-
mum relative error is of the order 10 "1 (for example, when the number 1.999 is
truncated after D = 1 digits, the result is 1).

Tables 6.7 and 6.8 demonstrate the numerical results of the reconstruction
of Examples 2.1 and 3, respectively, with various truncations of the input data.
In each case, a was chosen sufficiently large that the error from the truncation
of the trace formula due to finite a (see (4.194), (4.198)) is negligible compared
to the error due to the finite number D of digits retained. For a given a, the
parameters hk, N, were chosen such that accuracy of the reconstruction was
not improved by a further decrease of hk and/or increase of N. Also see Figures
6.10- 6.14, comparing the scatterers reconstructed using the perturbed data with
the prescribed ones.
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Figure 6.9: Reconstruction of Example 4.2 with a = 20

D a hk NX E_ 2  E0
1 7 0.1 100 0.410 0.474
1 14 0.1 300 0.412 0.473
2 7 0.1 100 0.126 0.156
2 14 0.1 300 0.128 0.157
3 7 0.1 100 0.174 x10-1 0.265 x10-1

3 14 0.1 300 0.187 x10-1 0.256 x10 -1

4 14 0.1 300 0.126 x10-2  0.151 x10-2

4 28 0.05 600 0.118 x10-2 0.132 x10-2

5 14 0.1 300 0.297 x10-3  0.426 x10-3

5 28 0.05 600 0.250 xlO -3  0.324 x10- 3

Table 6.7: CPU Times and Accuracies for Example 2.1 with Truncated Data
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Figure 6.10: Reconstruction of Example 2.1 with D I

0.4

0.2

0.0 -----

-0.2

-0.4

0 2 4

Fn

Fiur .11: Reosrcino xape21wt



6.2. NUMERICAL RESULTS 61

0.6 I

0.4

0.2 -

0.0

-0.2 -

-0.
0 2 6

Figure 6.12: Reconstruction of Example 2.1 with D = 3

D a hk Nr E 2  E
1 10 0.1 150 0.647 0.863
1 20 0.1 300 0.640 0.852
2 10 0.1 150 0.121 0.173
2 20 0.1 300 0.113 0.164
3 10 0.1 150 0.314 x10- 1 0.602 x10- 1

3 20 0.1 300 0.206 x1O-1 0.439 xlO- 1

Table 6.8: CPU Times and Accuracies for Example 3 with Truncated Data
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Figure 6.13: Reconstruction of Example 3 with D = 1
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Figure 6.14: Reconstruction of Example 3 with D = 2
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a hk N. E 2 E0 t (sec.)
25 0.2 250 0.750 x10-1  0.153 22.6
25 0.1 250 0.722 x10-1  0.145 45.0
50 0.2 500 0.512 x10 - ' 0.793 x10'-  89.8
50 0.1 500 0.349 xlO-1  0.686 xl 1' 179
100 0.1 1000 0.158 x10-1  0.359 x10 ' 718

Table 6.9: CPU Times and Accuracies for Example 6

We conclude the numerical examples by a nearly singular problem with the
scattering potential defined by the formula

q(x) = 2 - -5-(x-°97)2 + sin(5(2x - 7r)) • sin 2 (2x - 7r). (6.21)

The parameters in (6.21) were chosen such that the minimum of the function
1 + q is nearly zero. In fact,

minq(x) = -0.9953, (6.22)
XER
maxq(x) = 2.10. (6.23)

Such a scattering potential is extremely difficult to reconstruct since the speed of
sound in the scatterer changes drastically (the ratio between the maximum and
minimum speed of sound is about 400), and the impedance functions p+, p have
large values, making the ODE system (6.3), (6.4), (6.5) stiff. A standard second
order Crank-Nicolson implicit scheme was employed to solve this problem.

Example 6. Table 6.9 demonstrates the numerical results of the reconstruc-
tion of the scattering potential (6.21). Also see Figure 6.15 for the numerical
reconstruction.

The following observations can be made from Tables 6.1- 6.9 and Figures
6.1- 6.15.

1. When the scatterer satisfies the conditions of Theorems 5.1, 6.2, the accuracy
of the reconstruction is somewhat better than that predicated by these theorems
(see Example 2.1). This indicates that (as expected) the estimates (5.13), (6.12)
are somewhat pessimistic.

2. When the scatterer violates the conditions of Theorems 5.1, 6.2 mildly (by
having discontinuous derivative at the points 0, 27r), the reconstruction algo-
rithm still converges. Qualitatively, the reconstructions in Figure 3(a) should be
described as good. A careful examination of Table 6.4 (and other data not pre-
sented in this thesis) shows that the error of the reconstruction for such scatterers
is proportional to 1/a.
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2

0

24

Figure 6.15: Reconstruction of Example 6 with a = 50

3. When the scatterer is discontinuous (Examples 4.1, 4.2), the algorithm pro-
duces results depicted in Figures 6.7, 6.9. The oscillatory behavior near the
discontinuities resembles the well known Gibbs phenomenon. A careful exami-
nation of Tables 6.5, 6.6, (and other data not presented in this thesis) shows
that in this case, the point-wise convergence is absent. In the L2-norm, the error
of the reconstruction behaves like 1 /fi.

4. When the initial data are perturbed, the resulting error of the reconstruc-
tion appears to be proportional to the magnitude of the perturbation, and the
proportionality coefficient is close to 1. This is a much better estimate than the
one of Lemma 5.4 which bounds the condition number of the algorithm by a.
Qualitatively, it can be said that the algorithm is not sensitive to errors in the
initial data.

5. When the speed of sound to be reconstructed varies by several order of mag-
nitude, the algorithm encounters a mild difficulty in the form of stiffness of the
system of equations (6.3)- (6.5). The problem is easily solved by switching to
an implicit ODE solver.



Chapter 7

Generalizations and Conclusions

7.1 Generalizations in One Dimension

Following is a discussion of possible generalizations of the techniques and results
of this thesis in one dimension.

1. In their present form, Theorems 5.1, 6.2 require that the scatterer have at least
four continuous derivatives. Numerical examples 3-4 of the preceding section
make it abundantly clear that this is a superfluous requirement. Obviously,
Theorems 5.1, 6.2 can be generalized to at least include the scatterers of the
type reconstructed in examples 3-4. Including the scatterers of examples 3-4
will be somewhat more involved, and will require a significant reformulation of
Theorems 5.1, 6.2.

2. The algorithm of this thesis can be extended to the Schr6dinger equation.
The generalization is fairly straightforward and will be reported at a later date.

3. In this thesis, we reconstruct a scalar potential q given the scattering data for
a single Helmholtz equation. In many problems of physical interest, the potential
has several components (such as the compressional and shear speeds of sound in a
medium), and the scattered data correspond to a system of Helmholtz equations
(such as equations of elastic scattering, or Maxwell's equations in the frequency
domain). An extension of the techniques to these cases appears to be relatively
straightforward, and will be reported at a later date.

4. The impedance function formulation of the inverse problem (see, for example,
Section 5.2) can be reformulated as an initial value problem for two variables
called local reflection coefficients R+(x, k) and R-(x, k) defined below. Later in
Section 7.2, an extension of this formulation to two dimensions will be presented.

For any x0 E [0, 1] ([0, 1] is the support of the scatterer q), we define the

65



66 CHAPTER 7. GENERALIZATIONS AND CONCLUSIONS

truncated scatterers qT(x) and q9(x) by the formulas

0 if X < Xo, (7.1)q,.x)= qx)if x >x0,(71

q(x) if x<xo,

qt(x) = 0 if x > xo. (7.2)

Clearly, the right-traveling incoming wave €i¢+ (x, k) = e i kx gets reflected at
x = x0 due to the discontinuity of q, at that point. Since the q,(x) = 0 for all
x < x0 , the total field, which is the solution of the Helmholtz equation, may be
expressed as (see formula (2.17) in Section 2.2)

0+(x, k) = ekz + R+(xo, k)e - k, for all x < xo, (7.3)

where R+(xo, k)e - ikx is the reflected (or back-scattered) wave. We refer to
R+ (xo, k) as the local reflection coefficient at x0.

Denote by p+ and p+r the impedance functions for the two scatterers q and q,
respectively (see Section 2.2 for the definition of the impedance functions). For
all x > xo, p+ and p+, satisfy the same Riccati equation (3.50), since q,(x) =
q(x). Furthermore, they satisfy same initial condition (3.52); consequently

p+(x, k) = p+r(x, k), for all x > xo. (7.4)

Combining formulas (2.15), (7.3), and (7.4) with the fact that p+,(x, k) is
continuous across x = x0 , we have the formula

I - R+ (xo, k)e- 2ikxo
p+(xo, k) = 1 + R+(xo, k)e -ikxo' (7.5)

from which we ( . ,ain
R+(zo k~e 1 - p+(ro, k)

R+ (xo, k)e-2 ikxo 1 + + (xo, k)' (7.6)1 + p+(xo, k)'(.6

for all real x0 .
We observe that there exists a real c > 0 such that for all real x and complex

k in the upper half of the complex k-plane,

IR+(x, k)e-2ikx < c < 1, (7.7)

since p+ is uniformly bounded, and Re(p+) > 0 is uniformly bounded from below
by a positive number (see Theorem 4.17 in Section 4.2).

It is now clear, from the Riccati equation (3.50) and formulas (7.5), (7.5),
that there is an ODE for the local reflection coefficient R+(x, k)

R'+(x,k) = -iq(x) (R+(x, k)e - 'kx + ei kx) 2 (7.8)
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which is, of course, a Riccati equation for R+(x, k) with the variable k as a
parameter.

In a similar manner, the local reflection coefficient R_(x, k) is defined by the
formula

¢_(x, k) = e- kx + R_(xo, k)e kx, for all x > x01, (7.9)

where 0- is the solution of the Helmholtz equation induced by the left-traveling
incoming wave Oi,,- (x, k) = e- ikx and the scatterer q defined by formula (7.2).
The following is a list of similar facts about R_.

For any real x and complex k in the upper half plane, R_ is connected with
p- via the formulas

1 - R_(x, k)e 2ik(.
p_(x,k) = 1 + R_(x,k)e2 kx' (7.10)

R_(x, k)e 2ik - 1 - p_(x, k).

1 +p_(x,k)' (7.11)

R_ is bounded by the formula

IR_(x,k)e 2 kx _ c < 1; (7.12)

and R_ satisfies the Riccati equation

R'_(x, k) = 2 q(x)(R_(x,k)ekx + e-k )2 . (7.13)

Finally, it is easy to see that there is a trace formula associated with the local
reflection coefficients R+, R-,

1
q' (X) 7 -(1 + q(x)) (1 + 11 + q(x)) x

Loo (R+(z, k)e-2ikx - R_ (x, k)e 2ikx ) dlc. (7.14)

The ODE system (7.8), (7.13), and (7.14) for R+, R-, and q is solved with
appropriate initial values of R+, R-, and q at x = 0. As is expected, the
convergence results are similar to those presented in Section 5.2.

Numerical experiments show that the performance of the algorithm using the
local reflection coefficients is slightly and consistently better than that using the
impedance functions.

7.2 Extensions to Two Dimensions

The following is a brief discussion of the generalizations of our inversion algo-
rithms in two dimensions. While the impedance function formulation of the
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inverse problem (see Section 2.2) can be easily generalized in two dimensions,
the reflection coefficient formulation (see Section 7.1 for the 1-D formulation) in
two dimensions is not straightforward. Below, we first formulate the forward (as
opposed to inverse) scattering problem in two dimensions. We then derive the
Riccati equation for the impedance mappings, for the two dimensional inverse
problem. A trace formula associated with the impedance mappings (similar to
the trace formula used in Section 5.2) is then presented. Finally, for the general-
ization of the reflection coefficient formulation, we will present a Riccati equation
for the scattering matrix in two dimensions.

7.2.1 Forward Scattering Problem in Two Dimensions

We first formulate the forward scattering problem in two dimensions. Let us
consider the two dimensional Helmholtz equation

Ao(x, y) + k2 -(1 + q(x, y)) - 4(x, y) = 0. (7.15)

where A is the Laplace operator. We assume that the scatterer q : R 2 -+ R is a
smooth function and has a compact support 9, and that q > -1.

In the forward scattering problem, we are interested in solutions of Helmholtz
equation (7.15) of the form

(X, IY) = 00(X, y) + ?(X, y), (7.16)

where 6 is referred to as the total field, O0 is referred to as the incoming field,
and / is referred to as the scattered field. We also say that the total field p is
induced by the incoming field 00.

The incoming field is a solution of the Helmholtz equation (7.15) with q =_ 0.
It can be expressed by a linear combination of the incoming plane waves of the
form

oip,(X, y) = eik(x 'cs()+sin()) (7.17)

with 0 the direction in which a plane wave travels. As can be easily verified, for
each real 0, functiou (7.15) is a solution of the Helmholtz equation (7.15) with
q --0.

The scattered field 0 satisfies the so-called Sommerfeld radiation condition,
or the outgoing radiation condition

V/'f .(L"~ - t' - k - b) -+- O, as r = vfx2 + y2 -- oo ,(.8

and satisfies an inhomogeneous Helmholtz equation

AO(x,y) + k2 . (1 + q(x,y)) . (x,y) = -k. q(x,y) . o(x,y). (7.19)
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7.2.2 Riccati Equations for the Impedance Mappings

We define the set of right-going plane waves by the formula (see (7.17) for the
definition of the incoming plane waves)

= {eik(x-cos(3)+ysin(3)) 7r < 3 < 7.2 -' 2 } " (7.20)
2' 2

A solution of the Helmholtz equation (7.15) is said to be a right-going so-
lution, if it is induced by a right-going plane wave, or in general, by a function
0+0 in the linear span of the set t,p, of right-going plane waves (see (7.16)).
Therefore, the set of right-going solutions is defined by the formula

(Drgs = {€+ = O+o + V;+ I €+0 E Span(4rp ),V is the scattered field }. (7.21)

We are now ready to define the impedance mapping P+. For fixed x and k,
P+(x, k) is a linear mapping, -- L', where L is the local TA space on
the real line. It maps, for fixed x and k, a right-going solution 6+ E 4Dg, as a
function of y to its derivative with respect to x as a function of y, more specificly,

P+ (x, k). (x,y) = 1 O¢+(xY) ,for any 0+ E I Dg . (7.22)
P k O

Assuming that for fixed x and k, the right-going solutions in 4 gs is dense in
LC7 and combining (7.22) with the Helmholtz equation (7.15), we can easily
obtain a Riccati equation for the impedance mapping P+,

P+(x,k) = -ik P(x, k) - dyL (I + q(x,.)) (7.23)

where I is the identity operator, q(x, .) is a diagonal linear operator,

q(x,-) f(y) = q(x, y) f(y), (7.24)

for a fixed x and any f E L10C.

The impedance mapping P_ can be defined by first introducing the set of all
left-going solutions in a similar manner, which leads to a Riccati equation for P_,

k( - 1 d (I+q(x,.) (7.25)P'_(~k)= ikP (~k)k2 dy 2

d
2

These Riccati equations are operator equations; the operator 4r, for example,
in the standard discretized form, is a tridiagonal matrix, hence the term "matrix
Riccati equations".
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Combining the definition of the impedance mappings with the standard WKB
approximation, we obtain a trace formula (the derivation is omitted here),

+q(x,y)= 2(1 +q(x,y))f (P+(x,k) - P_ (x,k)). Foe(y)dk, (7.26)
x 7r 00

where Fone(y) 1 for any real y is clearly a function in L 2 . Numerical experi-
ments show that when the integral is truncated so that it is taken over the interval
I-a, al, the rate of convergence behaves exactly like that in one dimension (see
Section 4.3).

Remark 7.1 While the matrix Riccati equation and the trace formula associ-
ated with the impedance mappings are extremely similar to their one dimensional
counterparts (see Section 5.2), the spatial discretization of these two dimen-
sional objects is quite different from that in 1-D. The fact that the scattered field
g2 decays very slowly like 1/v/- makes spatial truncation virtually impossible.

In solving the initial value problem of the ODEs (7.23), (7.25), and (7.26),
the desired truncation in y-direction (see Remark 7.1) is achieved by periodizing
the scatterer q in y-direction (the details of this procedure are omitted). The
periodized problem is then truncated in frequency space, and discretized in a
procedure similar to that described in Section 6.1. Numerical experiments are
presently being conducted, and the results, together with the periodizing proce-
dure, will be reported at a later date.

7.2.3 Riccati Equations for the Scattering Matrix

In a manner similar to that in which the impedance functions p+ and p- are
connected to the local reflection coefficients R+ and R_ in one dimension (see
Section 7.1), the two dimensional objects P+ and P_ are related to linear map-
pings called the scattering matrices, which are the two dimensional analogues of
the local reflection coefficients R+ and R_.

We will define these scattering matrices in the polar coordinates, and will
present matrix Riccati equations for the scattering matrices. The procedures
used here being similar to those described in Section 7.1, only the main results
will be presented. We will also casually use several well established results about
cylindrical functions.

For any R > 0, we define the truncated scatterer qR by the formula

_fq(r, 0) if r<
qR(r,O) - ' 0 ifr<R, (7.27)S0 if r > R,
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We first discuss the forward scattering from the truncated scatterer qR. As is
well-known, for any r, an incoming field (see Section 7.2.1) can be expressed as
the so-called Bessel-Fourier series

00

C =,e(r, 0) am" Jm(kr)eme. (7.28)
m= -00

Is is also well-know that for a fixed R, and for any r > R where qR(r, 0) = 0,
the scattered field induced by Oic and qR can be written as the so-called Hankel-
Fourier series

00

(r, 0) = 1 13m(R,k) . Hm(kr)ema, (7.29)
m=-o0

where Jm is the first kind Bessel function of order m, Hm is the first kind Hankel
function of order m. It is well-known that once m > !kr, Jm(kr) decays and
H,(kr) grows like

Jm(kr) - (e'kr), (7.30)

Hm(kr) - - ' (er-2-m (7.31)

As is well-known, for an incoming field of the form (7.28), there exists a
unique scattered field of the form (7.29), such that 0 = 0j,, + 7b. is a solution of
the Helmholtz equation (7.15). Consequently, the linear mapping

S(R, k). {a,(R, k), m = 0, ±1, ... } = {1fm(R, k), m = 0, ,...} (7.32)

is well-defined, and is normally referred to as the scattering matrix. Furthermore,
the entries of the matrix S decay very rapidly, since t3m(R, k) decays extremely
rapidly due to (7.30), (7.31).

The scattering matrix S satisfies the Riccati equation

S'(r, k) = irrk2 .(J(kr)+ S(r, k).H(kr)).F.q(r, .).F-1 .(J(kr)+ H(kr).S(r, k)),
2

(7.33)
where J(kr), H(kr) are diagonal matrices

J(kr) = diag{Jo(kr),J~1 (kr),.. .1, (7.34)

H(kr) = diag{Ho(kr),H~l(kr),...}, (7.35)

q(r, .) is a diagonal linear operator

q(r,.), f(0) = q(r, 0) - f(0), (7.36)
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and F is the Fourier transform.
The derivation of this Riccati equation follows the procedures outlined in

Section 7.1, where Riccati equations for the local reflection coefficients are ob-
tained from the Riccati equations for the impedance functions. The derivation
is omitted here, and will be reported at a later date.

Remark 7.2 While the investigation of the inverse scattering problem in the
form of Riccati equation (7.33) is in progress, numerical experiments show that
ODE (7.33) could be useful for the solution of the forward scattering problem.
Unlike the Riccati equations for the impedance mappings, where there is a serious
problem with truncation, the scattering matrix S can be truncated easily since its
high-frequency entries (those with large indices) decay very rapidly. We currently
use the standard 4-th order Runge-Kutta method to solve the forward scattering
problem, that is, starting from r = 0 and S(r, k) = 0, solve the initial value
problem till r = Ro, for some Ro where the entire circle contains the support of
the scatterer. The whole procedure, as is easy to see, requirs order N4 . log(N)
operations to obtain an N x N scattering matrix.

7.3 Conclusions

An algorithm has been presented for the solution of the inverse scattering prob-
lem for the Helmholtz equation in one dimension. The algorithm is based on a
combination of the standard Riccati equation for the impedance function with a
newly constructed trace formula for the derivative of the potential, and leads to
extremely accurate and efficient numerical schemes for smooth scatterers. The
principal differences between this scheme and various layer-stripping techniques
(see [12], [13], [14]) are:

1. The algorithm operates in the frequency domain, while other efficient schemes
are time-domain ones.

2. While the layer-stripping algorithms assume (at least conceptually) that the
scatterer is piece-wise constant, and are best in this regime, our algorithm as-
sumes that the scatterer is continuously differentiable. When the scatterer has a
sufficient number of derivatives, the algorithm converges almost instantaneously
(see Theorems 5.1, 6.2).

3. The principal drawback of the layer-stripping algorithms is the fact that they
are an essentially one-dimensional techniques, and the author is not aware of
any successful attempts to generalize them to higher dimensions. Our techniques
do generalize to two and three dimensions, and in fact an implementation of a
two-dimensional version of the procedure is in progress.
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